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Universitat Autònoma de Barcelona

Bellaterra, Spain

jordi.carrabina@uab.cat

David Castells-Rufas

Dept. of Microelectronics and Electronics Systems
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Abstract—This paper proposes a data augmentation method
for improving the robustness of driving object detectors against
domain shift. Domain shift problem arises when there is a
significant change between the distribution of the source data
domain used in the training phase and that of the target data
domain in the deployment phase. Domain shift is known as one
of the most popular reasons resulting in the considerable drop
in the performance of deep neural network models. In order to
address this problem, one effective approach is to increase the
diversity of training data. To this end, we propose a data synthesis
module that can be utilized to train more robust and effective
object detectors. By adopting YOLOv4 as a base object detector,
we have witnessed a remarkable improvement in performance on
both the source and target domain data. The code of this work is
publicly available at https://github.com/tranleanh/haze-synthesis.

Index Terms—Object detection, domain shift, hazy scene,
YOLOv4, autonomous driving.

I. INTRODUCTION

Over the last decade, convolutional neural networks (CNNs)

have shown their ubiquitous influence in computer vision with

explosive rises in performance on numerous real-world vision

tasks such as object detection [1], image segmentation [2],

and image restoration [3]. CNN-based models generally are

data-driven which can learn to estimate desired outcomes

based on the data that they are trained on. This property of

CNN, however, is related to one of its principal drawbacks.

That is, CNN-based approaches usually overfit the training

data while their generalization capability to out-of-domain

data is insufficient. In other words, their performance is often

degraded when facing domain shift which is when there is a

dramatic change between the distribution of the source data

domain used in the training phase in comparison with that

of the target data domain in the deployment phase. Domain

†Equal contribution.
*Corresponding author.

(a) (b) (c)

Fig. 1: Data synthesis: (a) Original clean image, (b) Synthetic

image by the proposed method, (c) Natural hazy image [4].

shift is extremely difficult to handle in an online fashion with

conventional learning methods since CNN-based models must

be trained with sufficient time and training data prior to being

deployed into any applications.

On the other hand, driving object detection has been one of

the most well-studied topics in the current era of self-driving

vehicles and autonomous robots. However, driving object

detectors have a high probability of encountering domain shift

because the environmental conditions may quickly change in

practice. For instance, an object detector that was trained on

clean-weather image data may not be able to perform well

when facing inclement weather conditions like fog and haze.

Fig. 1c illustrates typical real-world foggy scenes in driving

scenarios where the visibility of the driver or autonomous

system camera is substantially restricted. Therefore, improving

the robustness of object detection models under such circum-

stances is extremely desired.

One effective approach to alleviating the problems that orig-

inated from domain shift is to increase the diversity of training

data. In this paper, we aim to mitigate the effect of domain shift
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Fig. 2: Pipeline of the proposed method (the illustration of YOLOv4 is adapted from [5]).

when the weather changes from clean to hazy, foggy, or dusty

cases. Specifically, based upon the original clean image and

Koschmieder’s law [6], we propose a data synthesis module

that can generate high-quality hazy image data, as shown in

Fig. 1b. This module can be implemented online or offline to

train more robust and effective object detection models. By

adopting YOLOv4 [1] as the base object detector, we want to

explore the effects on the object detection performance when

applying the proposed data synthesis method in this paper.

The remainder of this paper is organized as follows: Section

II briefly describes the relevant methods to this research. The

proposed data synthesis module is proposed in Section III. The

results of data synthesis and object detection are presented in

Section IV. Section V concludes the paper.

II. RELATED WORKS

A. Haze Imaging Model

Mathematically, a hazy image can be modeled as a per-

pixel convex combination between the clean scene radiance

and the global atmospheric light, this model is known as the

haze imaging model or Koschmieder’s law [6]:

I(x) = J(x)t(x) +A(1− t(x)), (1)

where x denotes pixel index, I(x) represents the intensity of

hazy image, J(x) is the clean scene radiance, A denotes the

global atmospheric light, and t(x) indicates the transmission

map. When the global atmospheric light A is homogenous,

t(x) can be expressed as [3]:

t(x) = e−βd(x), (2)

where β represents the scattering coefficient of the atmosphere,

and d(x) denotes the depth information. From Eq. (1), a hazy

image I(x) can be synthesized when the transmission t(x) is

given, and from Eq. (2), the transmission is closely linked

to the depth information d(x) of the scene. Therefore, an

accurate estimation of the scene depth information can result

in a visually compelling synthetic hazy image.

B. Depth Estimation Model

The estimation of scene depth using only a single RGB

input image is a challenging and long-standing problem in

computer vision. Recently, Monodepth2 [7] is the method that

has made a breakthrough in this field and has established a

new baseline for single image depth estimation. Moreover,

Monodepth2 has been validated on the KITTI benchmark [8],

a driving scene dataset, which is closely related to the aim of

this study. From those aspects, Monodepth2 is chosen as the

depth estimation method in the proposed pipeline. In order to

perform monocular depth estimation, the model has to estimate

the egomotion between temporal image pairs during training.

This process can be carried out by training a pose estimation

network that takes as input a finite sequence of image frames

and computes the camera transformations. Monodepth2 adopts

a general encoder-decoder architecture as the backbone. Depth

estimation and camera pose estimation are performed by two

decoders. The encoder of Monodepth2 is a ResNet architecture

[9] which takes as input a single RGB image for the depth

estimation. For the pose estimation, the encoder is constructed

to receive a pair of image frames as input. Therefore, the first

filter tensor is duplicated along the channel dimension to make

the filter shape fit to the pose estimation encoder. On the other

hand, the depth estimation decoder is constructed as a fully

convolutional network with skip connections which allow the

network to exploit the features in different resolution levels.

A sigmoid activation function is utilized at the last layer in

order to normalize the disparity map. In addition, the pose

estimation decoder is also a fully convolutional network that

predicts the rotation using an axis-angle representation.

C. Object Detection Model

Over the past few years, the object detection field has

witnessed the dominant popularity of the one-stage object

detector series, YOLO [1], [10]–[12], which can achieve state-

of-the-art performance on the MSCOCO benchmark [13]. The

first YOLO model, YOLOv1 [10], was proposed to combine

the problems of drawing bounding boxes and recognizing class

labels in a single end-to-end differentiable network, which

had made a breakthrough in the field of object detection.

One year later, YOLOv2 [11] made several improvements on



Fig. 3: Synthetic image data: (a) Original clean image, (b) Estimated depth, (c,d,e) Synthetic hazy images by the proposed

method with different β values: 1.0, 1.5, 2.0, respectively, note that larger value of β results in denser haze, and (f) Synthetic

hazy image based on transmission randomization.

top of YOLOv1 including the use of the batch normalization

layer, higher resolution processing, and anchor box concept.

After that, YOLOv3 [12] was built upon previous models

by designing further connections to the backbone network

that can make predictions at three different levels of feature

map resolution in order to improve the ability to detect

small objects. So far, the most widely used version has been

YOLOv4, since the follow-up versions have not made obvious

progress. The architecture of YOLOv4 remains adequately

uncomplicated so that it can be deployed to almost all types

of hardware and applications. Therefore, we adopt YOLOv4

as the base object detector in this research. YOLOv4 utilizes

CSPDarkNet53 [1] as the backbone for feature extraction. For

the neck part, PANet [14] and SPP block [15] are adopted

to increase the receptive field and separate out important

features from the backbone. YOLOv4 employs the same head

as YOLOv3 with the anchor-based detection strategy and three

levels of detection granularity. During training, mosaic data

augmentation [1] is carried out which combines four cropped

images together in order to teach the model to find smaller

objects and pay less attention to surrounding scenes.

III. METHODOLOGY

The proposed pipeline is illustrated in Fig. 2. As shown in

Fig. 2, an input image is first passed through the proposed data

synthesis module to generate a synthetic hazy image before

being passed to the object detection model for training. The

proposed data synthesis module includes three stages. In the

first stage, depth map is estimated by Monodepth2 model.

As mentioned throughout the paper, we aim at improving the

robustness of object detectors in driving scenarios, hence, the

used Monodepth2 model which was pre-trained on driving

scene data [8] can guarantee the quality of the extracted depth

information and result in high-quality synthetic hazy images.

In the second stage, transmission is computed by applying

Fig. 4: Data synthesis results for KITTI (three top pairs) and

MSCOCO image data (left: original, right: synthetic).

Eq. (2). The value of scattering coefficient β in Eq. (2) is

set to a randomly chosen real number in the range [1.0, 3.0]
in order to generate an arbitrary haze density for each input

image and consequently the diversity of the synthetic data can

be enhanced. In the last stage, the synthetic hazy image is

produced by applying Koschmieder’s law as described in Eq.

(1), with A randomly selected in the interval [150, 255] to
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Fig. 5: Object detection performance comparison: (a) YOLOv4 on clean scene, (b) YOLOv4 on hazy scene, (c) YOLOv4-Synt

on clean scene, and (d) YOLOv4-Synt on hazy scene.

TABLE I: Quantitative comparison of object detection performance on different test sets.

WAYMO WAYMO-Haze Foggy Driving

mAP Precision Recall mAP Precision Recall mAP Precision Recall

YOLOv4 41.58 0.5767 0.6360 36.17 0.5523 0.5457 72.54 0.3246 0.8182
YOLOv4-Synt (ours) 42.65 0.5982 0.6347 41.91 0.5926 0.6228 77.88 0.3087 0.8774

describe the airlight. Once the synthetic image data is obtained,

it is combined with the original input to train the object

detection model. The proposed module can be implemented

in two fashions, offline and online, with similar performances.

In the offline mode, the training data is synthesized prior to

the training process, whereas in the online mode, the data is

synthesized during training.

IV. EXPERIMENTS

In this section, the visibility of the synthetic hazy data is first

discussed, then the object detection performances on WAYMO

[16] and Foggy Driving [4] datasets are presented.

A. Synthetic Image Data

We first synthesize hazy image data from WAYMO dataset

[16]. We utilize a pre-trained Monodepth2 model which was

trained on KITTI dataset to estimate the depth map of im-

age data in WAYMO dataset because KITTI and WAYMO

datasets contain similar image scenes. However, WAYMO

dataset includes image data captured in five different views

(front, front-left, side-left, front-right, side-right) from the

driver’s perspective while KITTI dataset contains the image

data captured only from the front view. Hence, using all

scenes in WAYMO dataset may not guarantee the production

of adequate depth maps. Therefore, we select only front-view

image data in WAYMO dataset, specifically, 10,000 front-

view images for the training set and 100 front-view images

for the test set. All selected images are captured during

daytime period and in good lighting conditions. We term this

synthesized dataset as WAYMO-Haze. Fig. 3 shows typical

synthesized images using the proposed method with different

settings of β values in comparison with those of the method

based on transmission randomization. As can be observed from

Fig. 3, the proposed method can produce more natural-looking

hazy images. Further image synthesis results on KITTI and

MSCOCO datasets are shown in Fig. 4.

B. Object Detection Performance

We compare the performance of YOLOv4 in two settings.

In the first setting, we train YOLOv4 on only the original

WAYMO dataset, and in the second setting, we train YOLOv4

on the original WAYMO dataset combined with the proposed

data synthesis module. Note that the proposed module can be

implemented in two modes: offline and online, as mentioned in

Section III. Both modes can yield similar results. The online

mode is performed in this experiment. That is, the data is

synthesized during training. We term the model trained with

the proposed synthesis module as YOLOv4-Synt.

The object detection performances on the WAYMO and

WAYMO-Haze test sets are summarized in Table I. As the

results shown in Table I, YOLOv4-Synt is slightly better

than YOLOv4 on the original WAYMO test set. However,

on the WAYMO-Haze test set, YOLOv4-Synt outperforms

YOLOv4 with a significant gap. Fig. 5 shows typical visual

object detection results of YOLOv4 and YOLOv4-Synt on

the WAYMO and WAYMO-Haze test sets. As shown in Fig.

5, YOLOv4 and YOLOv4-Synt produce relatively similar

visual detection outcomes on the WAYMO test set, yet on



Fig. 6: Visual object detection results of YOLOv4 (top) and YOLOv4-Synt (bottom) on Foggy Driving dataset.

the WAYMO-Haze test set, YOLOv4-Synt can clearly surpass

YOLOv4 in terms of small and distant object detection.

In addition, object detection performance on natural hazy

scenes from Foggy Driving dataset is also investigated. In

this experiment, we directly utilize the pre-trained weights of

YOLOv4 and YOLOv4-Synt from the preceding experiments

to conduct a comparison on Foggy Driving dataset. The

quantitative results are also given in Table I while typical

visual detection results are shown in Fig. 6. As the quantitative

results presented in Table I, the performance of YOLOv4-Synt

is outstanding when compared to that of YOLOv4 in terms of

mAP and Recall. Also, as can be seen in Fig. 6, YOLOv4-Synt

can produce superior results against YOLOv4 and can help to

obtain better localization and improve detection accuracy on

distant and small objects.

V. CONCLUSIONS

This paper proposes a data synthesis module that can

be implemented during the training process to improve the

robustness of driving object detection models against domain

shift. Domain shift usually results in a drastic degradation in

the performance of deep neural network models. In order to

deal with this problem, one of the most effective approaches

is to upgrade the diversity of training data. To this end, an

innovative data synthesis module is proposed which can be

combined with the original dataset and implemented in the

training process to train more robust and effective object

detectors. The quantitative and qualitative results have shown

that the proposed data augmentation approach can help to

improve the robustness and effectiveness of object detection

models on both in-domain and out-of-domain image data.
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