

I

Abstract – During autonomous flight procedure, autonomous

landing on a specified object is one of the most dangerous and

challenging processes, requiring an advanced study in both

hardware and software approaches. In this paper, a new

methodology is developed, including two major tasks, for

vision-based autonomous landing systems executed by a

quadcopter: (1) a vision-based algorithm is used to detect and

predict an object’s future motion using Kalman Filter; (2) PID

algorithm is implemented in a quadcopter platform to

autonomously balance and land this one on a stationary target.

This autonomous task is obtained by two essential components:

accelerometer and gyroscope. However, the sensors are

susceptible to noise caused by driving forces in the system, such

as the vibration of the motors. Therefore, we also investigate a

use of complementary filter to make the outcome from two

sensors as best as possible. Real quadcopter experiments have

been implemented to validate the effectiveness of the proposed

method.

Keywords: autonomous landing, quadcopter, PID controller, object

detection, Kalman filter;

I. INTRODUCTION

An Unmanned Arial Vehicle (UAV), which is commonly

known as a Drone, is an aircraft without a human pilot

aboard. There are many various degrees of autonomous

flights: either under manual control by human or

autonomous control by onboard computers. Due to the

flexibility in control, UAV systems have a wide applications

in all civilization and military fields, such as search and

rescue operation, tracking object, delivery product. More

recent researches relative to UAV application can be found

in [5-6]. A Quadcopter is a type of UAV with 4 rotors, it has

advantages compared to other types of UAV such as simply

mechanic architecture, flexible moving ability in narrow

spaces with the compact size, and easily manufactured [1-6].

Computer vision consists of theories and engineering

aimed to create artificial systems in order to collect and

process images or multi-dimensional database using

cameras. The combination between computer vision and

other engineering technologies provide many applications in

science, military and many more.

Nowadays, experts are outlining positive methodologies

to solve traffic problems; notably, tracking a crime or

*The research was supported by Intelligent Systems Laboratory (ISLab),

Faculty of Electrical and Electronics Engineering, Ho Chi Minh City
University of Technology and Education, Vietnam.

Le-Anh Tran, Ngoc-Phu Le and Truong-Dong Do are students in Ho Chi

Minh City University of Technology and Education, Vietnam.
(e-mail: { tranleanh.nt, lephu0803, truongdong2406 }@gmail.com)

My-Ha Le is a Ph.D. in Faculty of Electrical and Electronics

Engineering, Ho Chi Minh City University of Technology and Education,
Vietnam. (corresponding author)

(e-mail: halm@hcmute.edu.vn)

supporting victims of a traffic accident. A potential method

proposed in this paper is to use the UAV as a supporting

robot since its traveling path is less blocked from the air than

that of the unmanned ground vehicles (UGVs). On the other

hand, a difficult problem of UAVs is safety landing.

Currently, researches on the autonomous landing for UAVs

is still underway in the world. The purpose is to allow UAVs

to be capable of landing on ships and trucks, or in the case of

cyclones and other disasters [4]. This paper presents a

solution for the autonomous landing of a quadcopter on a

stationary target. A vision-based method for autonomous

landing on a target with a quadcopter will be considered.

This method includes a searching and a landing part.

The process is divided into 3 parts: 1 – detecting position,

2 – predicting position and 3 – autonomous landing. In the

first part, images are collected by a camera and then

processed by a Raspberry pi 3 Model B using HSV color

space, thresholding method to detect the X-Y coordinates of

the target on the 2D image plane. Then, a Kalman Filter is

applied to predict the near future X’-Y’ coordinates of the

target in the second part. In the final part, the X’-Y’

coordinates value are transformed to electronic signal in

order to control 4 rotors for landing. In addition, the

quadcopter stabilization is always guaranteed by using PID

controllers. Besides the major components in the research,

some different problems also need to be solved are reducing

noises for better quadcopter stabilization, and designing the

most suitable architecture for the quadcopter.

This paper is organized as follows. Section II firstly

describes the quadcopter platform, then the PID controllers

and a complementary filter for the quadcopter stabilization

are presented as well. Next, a vision-based algorithm for

object detection using HSV color space and an object

position prediction method using a Kalman filter are

discussed in section III. Section IV concerns the control

algorithm for autonomously landing. Then, section V reports

the experimental results. Finally, the conclusions of the

paper are presented in section VI.

II. QUADCOPTER DYNAMICS AND CONTROL

A. Experimental Apparatus

Figure 1. The block diagram of the system.

A Vision-based Method for Autonomous Landing on a Target with a

Quadcopter

Le-Anh Tran, Ngoc-Phu Le, Truong-Dong Do and My-Ha Le

Figure 2. The quadcopter platform.

Figure 1 depicts the block diagram of the system while

figure 2 shows the hardware platform used in this research.

The platform used in this research is a DIY hardware

platform. S500 Quadcopter Frame Kit is increasingly used in

education and research because of its low cost, robustness

and easily assembled. The system consists of a

microcontroller Arduino Uno, 4 Electric Speed Controllers

(ESCs), 4 Brushless DC motors, an Ultrasonic Sensor HC-

HR04, a MPU 6050 sensor equipped with 6-degree-of-

freedom inertial measurement unit: 3-axis gyroscope and 3-

axis accelerometer, a Raspberry pi 3 model B, a 5.0 MP

camera for the maximum resolution is 720p, and the

resolution of 640x480 with 30fps at the bottom to look down

vertically, and a 3800mAh battery for continuous flights of

from 10 to 15 minutes. The quadcopter can achieve speed of

about 3 m/s and operate very well for both indoor and

outdoor.

At the begin, the quadcopter takes off under a remote

controller. The remote controller consists of two components:

a Transmitter Devo 7 and a Receiver RX-701 with 7 channels

and the frequency of 2.4GHz. The flights operate under the

controller by human until the camera is able to observe the

target in its vision. Thus, the quadcopter can detect the target

(shown in figure 3), predict its next position in 2D images

and make the autonomous landing on it.

Figure 3. The target used in the research (60x60cm).

B. PID Controller

A controller plays the most important role in automatic

control systems. The basic idea of a controller is to read a

sensor, then calculate the desired actuator output. There are

different controllers which are suitable for various systems

such as PID, LQR, etc. In the research, the PID controller is

chosen due to its versatility and facile implementation, while

also providing a consistent response to the model dynamics

[6-7].

PID (Proportional-Integral-Derivative) controller is the

commonest control algorithm used in many applications to

optimize the system automatically. A PID controller is

capable of controlling the system to meet the quality criteria

such as short transient time, fast response, and reducing the

overshoot for the system [5-7]. Figure 4 shows the block

diagram of a PID controller in a feedback loop.

Figure 4. PID controller.

In which, r(t) is the desired process value or set-point

(SP), y(t) is the measured process value (PV), e(t) is the error

value which is the difference between the SP and the PV.

The PID controller attempts to minimize the error over time

by adjustment of a control variable u(t).

The control function can be expressed mathematically as

follows:

u(t) = KP.e(t) + KI.0∫te(t’)d(t’) + KD.de(t)/dt (1)

Next part presents PID controllers for the quadcopter

balancing. The feedback are yaw, pitch and roll angle values

calculated from the accelerometer sensor MPU 6050.

C. Quadcopter Dynamics

The yaw, pitch and roll angles of the quadcopter are

initialized as figure 5:

Figure 5. The yaw, pitch and roll angles.

Equation to calculate the angles from the gyroscope [2]:

0 sin cos
1

0 cos cos sin cos
cos

cos sin sin cos cos

x

y

z

t

t

t



   


    
 

     




 
 

    
     =  − 
    
        

 
  

Where Ψ, θ, Φ are the angles at the previous time (t-1).

So, the real values of them at the current time are computed

as below:

() (1)

() (1)

() (1)

tt t

t t t
t

t t

t



 


 


 




 
 

−     
     = − +  
     
   −     

 
  

Based on x-axis, y-axis and z-axis accelerations

measured from the accelerometer, the roll and pitch angles

are computed [2]:

cos cos cos cos sin 0

cos sin sin cos cos sin sin sin sin cos 0

cos sin cos sin cos sin cos sin cos cos 1

x

y

z

A

A

A

    

         

         

−     
     

= + 
     
     − +     

Thus, the actual values of roll and pitch angles measured

by the accelerometer are calculated as below:

arcsin
cos

yA
Roll 



 
= =  

 

arcsin()xPitch A= =

In addition, in this platform, an ultrasonic sensor is used

to maintain the altitude of the quadcopter in space. In this

case, the echo time signal from the ultrasonic sensor is fed

back to a PID controller.

Ultimately, apply the yaw, pitch, roll angles and the echo

time signal to the PID controllers. The system finally is

structured as figure 6:

Figure 6. The overall control structure of the quadcopter.

D. Complementary Filter

As the way an accelerometer measures active forces on

an object, it does not measure only gravitation but also other

forces, every small force which is active on the object is

completely measured and is considered to be a disturbance

to the measurement. An accelerometer itself is a sensor

susceptible to interferences. In quadcopters, the driving

forces of the system, such as the vibration of the motors, will

also affect the accelerometer. Therefore, using a filter is

definitely necessary.

Besides, because of the integration over time, the

measurement of the gyroscope tends to drift and do not

return to zero when the system returns to its original

position. The gyro data is only reliable in a short term and it

starts to drift in a long term.

A complementary filter indicates an efficient solution. In

the short term, the data from the gyroscope (gyrData) is used

because of its high accuracy. In the long term, the data from

the accelerometer (accData) is used since it does not drift. In

the simplest form, the filter formula looks as below [1][7]:

angle = alpha*(angle + gyrData*dt) + (1-alpha)*accData

In the equation (6), alpha is the filter coefficient

(0<alpha<1) and angle is the output of the filter. Roll and

pitch angle values are updated every iteration in an infinite

loop. The filter will check whenever the values measured

from the accelerometer is either reasonable or not. If any

value is too large or too small, it is a complete disturbance,

and the complementary filter attempts to decrease the

influence of this disturbance for the better computation. For

instance, if the alpha is 0.98, the filter will update the pitch

angle and roll angle for calculation by taking 98% of the

current values calculated by the gyroscope and an additional

2% of the angle values computed by the accelerometer. It is

always guaranteed that the measured values will not drift

and also are very precise in the short term. Figure 7 shows

the original signal of roll angle measured from the

accelerometer over time (blue) and the processed signal with

a complementary filter (red). It is facile to realize that the

blue one is easily affected by noise and the red one is a

better input for the controller.

Figure 7. Complementary filter.

III. A VISION-BASED METHOD TO DETECT AND

PREDICT AN OBJECT POSITION

This section presents the first main task in the paper, the

vision-based method to detect and predict the position of a

target and then land on it.

A. Color Detection

Generally, a photograph taken from a camera is formatted

as a 3-color RGB color image. However, in the field of image

processing, the color space is transferred to HSV because of

its certain benefits. HSV is a color space commonly used in

image editing, image analysis and computer vision. This

color space is based on three parameters to describe colors:

Hue (H), Saturation (S), and Value (V). Figure 8 depicts

HSV color space:

(2)

(4)

(5)

(6)

(7)

(3)

Figure 8. HSV color space.

The circle is the hue representation field (H), starting at

the red primary at 0°, passing through the green primary at

120° and the blue primary at 240°, and then back to red at

360°. The brightness value (V) is represented by going from

the bottom up to the top of the cylinder. At the bottom of the

cylinder, the value V is 0, the smallest, and the top of the

cylinder is the brightest (V=1). Moving from the center of the

cylinder to the side surface of the cylinder is the saturation of

the color (S), S=0 for the center where the color is the lightest

and S=1 on the side surface of the cylinder, where the color

value is most dense. Thus, each value (H, S, V) fully

describes the hue, saturation, and brightness of a specific

color [3][8].

The object detection task in the research was executed in

Python and OpenCV, a library of programming functions

mainly aimed at real-time computer vision. In the OpenCV

library, the HSV color space has been slightly modified, the

H value is not from 0° to 360° but from 0° to 180°, and the

values of S and V are ranged from 0 to 255. Figure 9 presents

a window with track bars to determine the H, S and V values

for color detection with OpenCV.

Figure 9. Track bars to determine the H, S and V values for
color detection with OpenCV.

Once the color is determined using HSV, the thresholding

method is used to convert the image into binary format. After

that, contours searching function is executed for drawing the

bounding box to cover the current location of the target. The

current position is defined as the center of the bounding box.

Figure 10 describes all of the processes presented as stated

above.

Figure 10. (a) original image, (b) converted HSV image,

(c) thresholded image, (d) output image with the detection.

B. Kalman Filter for Predicting Position

A common hypothesis in many vision-based tracking

algorithms presented so far is that the motion of an object

will change very little between two subsequent frames. Thus

an object’s position in the actual frame is an approximation

of its position in next frames [9].

This paper aims to exploit the concept of object

trajectory. The assumption is that the change in the position

of a object in each motion frame follows a mathematical

model over time. And the motion vector is modeled as a

discrete-time linear system described by the following

equation [9]:

x[t+1] = F x[t] + v[t] (8)

In the equation above, x[t] represents the system state

and describes the exact value of each coefficient of the

motion vector at time t, consists of the first derivative and

the second derivative as well, matrix F represents the second

order kinetic model, v[t] stands for errors made by the

modeling process. This error is defined as a sequence of

zero-mean, white, Gaussian process noise [9].

In line with the equation (1), a measurement equation as

follow is defined:

z[t+1] = H x[t+1] + w[t+1] (9)

This equation describes the relationship between state

observation z[t] and system state x[t]. This relationship is

determined by the matrix H and by the error w[t]. The error

modeled by w[t] calculates all possible inaccuracies in the

estimation of motion [9].

Applying a Kalman filter for the system determined by

the equation (8) and (9), it is possible to perform a recursive

motion tracking. At each new observation of the object

motion, z[t] is obtained through the estimation of motion.

According to the measured observations and the kinetic

models, the Kalman filter updates the state vector x[t]. This

filter integrates over time the available temporal information

for each object [9].

However, Kalman filter does not always provide a

correct prediction. This commonly happens when objects are

not predictable and that mislead the Kalman filter. In this

case, for better results, a rough prediction is used, that is the

last estimated motion of the object, x[t]. This will represent

a first guess of the future object position and motion [9].

A test is always necessary to decide when it is better to

use, as a prediction, the last estimated motion, x[t], instead

of using the Kalman motion prediction x[t+1=t]. To solve

this, a technique was proposed which is based on the motion

compensation error estimation. The predicted object is

compensated with both x[t] and x[t+1=t]. The motion

compensation between these two that produces the smaller

mean square error is chosen as the better prediction [9].

Figure 11 indicates the Kalman filter equations which are

divided into two parts, “prediction” and “correction”. The

“prediction” part estimates the motion or the next state and

the "correction" part is responsible to calculate error then

update the filter coefficient for the next prediction. Figure 12

shows the predictions of the target position in 2D image, the

red circles are the actual position detections and the green

circles are the predictions of the next target position.

Figure 11. Kalman Filter equations.

Figure 12 (a-d). Target predictions.

IV. CONTROL ALGORITHM FOR LANDING

As stated above, the predicted position of the target has

been determined. This section presents the control algorithm

for landing using the predicted coordinates of the target to

generate an autonomous landing quadcopter control signal.

The idea behind the algorithm is that the quadcopter will

autonomously turn left or right for adjusting its position in

space by changing the set-points of roll and pitch angles so

that the distance between the center point of the camera

frame and the predicted coordinates as small as possible. In

this case, the camera frame has a size of 320x240, the

distance between the center point of the camera frame and the

predicted coordinates is compared to 50 pixels in 2D image

with x-y coordinates, that distance is computed as below:

 Distance = sqrt[(160-x)^2 + (120-y)^2] (10)

Where (160, 120) is the x-y coordinate of the frame

center. When the distance is smaller than 50 pixels, the

throttle is adjusted to be decreased regularly then the

quadcopter can land on the target as accurate as possible. The

flow chart for the landing algorithm is presented in figure 13.

Figure 13. The flow chart of the landing algorithm.

V. EXPERIMENTAL RESULTS

Figure 14 (a-d) and 14 (e-h) depict the experiments

which were executed indoor at the altitudes of 100cm and

150cm above the ground.

Figure 14 (a-h). The indoor experiments.

The results showed that the quadcopter was able to land

on the limited area of the target, yet with low accuracy.

Figure 15 (a-i). Positions of landing.

Figure 15 (a-i) indicate some more experiments of

landing. The landing position changes in different

experiments. There are some analysis:

Figure 15 (a-c): The quadcopter is able to complete

landing with final positions are in the limited area of the

target, yet not high accuracy. The reason might be that the

rotor speed is reduced too fast when landing, therefore the

quadcopter gets out of the balanced state.

Figure 15 (d-f): The quadcopter is able to complete

landing with higher accuracy than previous because of the

improvement in the reduction of rotor speed.

Figure 15 (g-i): The experiments that the quadcopter

cannot complete landing and gets out of the limited area of

the target. The reason is that the quadcopter cannot observe

and detect the target in its vision.

VI. CONCLUSIONS

After many efforts of research and development, we have

designed and assembled a complete quadcopter model.

Besides, an autonomous landing method based on vision

with a quadcopter platform is presented in this paper. The

experiments were executed indoor many times at different

altitudes of landing. During the experimental time, there are

many problems that we had to face, especially in the landing

part. After improving the landing algorithm and fine-tuning

the code, the quadcopter now operates with good results.

The outcome proved that the quadcopter is capable of

autonomously landing on a stationary target very well with

80% accuracy by using a single camera attached to the

bottom, it means that there are 8 out of 10 times the

quadcopter land successfully on the target.

An improvement for the system to be capable of

autonomously landing on a moving target with a higher

accuracy will be proposed in the future.

ACKNOWLEDGMENT

The authors would like to thank Tuan-Thong Le for his

help, especially in doing experiments. This research is

supported by Intelligent Systems Laboratory (ISLab), Ho

Chi Minh City University of Technology and Education.

REFERENCES

[1] V.P. Kodgirwar, Vivek Kumar, Manish Shegokar, and Sushant

Sawant, “Design of Control System for Quadcopter using
Complementary Filter and PID Controller,” IJERT, vol. 3 Issue 4,

April - 2014.

[2] Minh Quan Huynh, Weihua Zhao, and Lihua Xie, “Adaptive Control

for Quadcopter: Design and Implementation,” in 2014 13th

International Conference on Control, Automation, Robotics and
Vision (ICARCV 2014), Marina Bay Sands, Singapore, Dec. 10-12th,

2014.

[3] Chi-Tinh Dang, Hoang-The Pham, Thanh-Binh Pham, and Nguyen-

Vu Truong, “Vision Based Ground Object Tracking Using AR.Drone

Quadrotor,” in International Conference on Computer Applications &

Information Security (ICCAIS), Nha Trang City, Vietnam, Nov. 25-
28, 2013, pp. 146-151.

[4] Daewon Lee, Tyler Ryan, and H. Jin. Kim, “Autonomous Landing of

a VTOL UAV on a Moving Platform Using Image-based Visual

Servoing,” in 2012 IEEE International Conference on Robotics and

Automation (ICRA 2012), RiverCentre, Saint Paul, Minnesota, USA,
May. 14-18, 2012, pp. 971-976.

[5] David Howard, and Torsten Mer, “A Platform for the Direct Hardware

Evolution of Quadcopter Controllers,” in 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

Hamburg, Germany, Sept. 28 – Oct. 2, 2015, pp. 4614-4619.

[6] Lucas M. Argentim, Willian C. Rezende, Paulo E. Santos, and Renato

A. Aguiar, “PID, LQR and LQR-PID on a Quadcopter Platform,” in
2013 International Conference on Informatics, Electronics and Vision

(ICIEV), Dhaka, Bangladesh, May 17-18, 2013.

[7] Kartik Madhira, Ammar Gandhi, and Aneesha Gujral, “Self-balancing

Robot using Complementary filter,” in International Conference on

Electrical, Electronics, and Optimization Techniques (ICEEOT),

India, 2016, pp. 2050-2054.

[8] Khamar Basha Shaik, Ganesan P, V.Kalist, B.S.Sathish, and J.Merlin

Mary Jenitha, “Comparative Study of Skin Color Detection and
Segmentation in HSV and YCbCr Color Space,” in 3rd International

Conference on Recent Trends in Computing 2015 (ICRTC 2015),

Ghaziabad, India, Mar. 12-13, 2015, pp. 41-48.

[9] Francesco Ziliani, and Fabrice Moscheni, Kalman Filtering Motion

Prediction for Recursive Spatio-Temporal Segmentation and Object
Tracking. Signal Processing Laboratory, Swiss Federal Institute of

Technology, CH-1015 Lausanne, Switzerland.

