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Abstract – During autonomous flight procedure, autonomous 

landing on a specified object is one of the most dangerous and 

challenging processes, requiring an advanced study in both 

hardware and software approaches. In this paper, a new 

methodology is developed, including two major tasks, for 

vision-based autonomous landing systems executed by a 

quadcopter: (1) a vision-based algorithm is used to detect and 

predict an object’s future motion using Kalman Filter; (2) PID 

algorithm is implemented in a quadcopter platform to 

autonomously balance and land this one on a stationary target. 

This autonomous task is obtained by two essential components: 

accelerometer and gyroscope. However, the sensors are 

susceptible to noise caused by driving forces in the system, such 

as the vibration of the motors. Therefore, we also investigate a 

use of complementary filter to make the outcome from two 

sensors as best as possible. Real quadcopter experiments have 

been implemented to validate the effectiveness of the proposed 

method. 

Keywords: autonomous landing, quadcopter, PID controller, object 

detection, Kalman filter; 

I. INTRODUCTION 

An Unmanned Arial Vehicle (UAV), which is commonly 

known as a Drone, is an aircraft without a human pilot 

aboard. There are many various degrees of autonomous 

flights: either under manual control by human or 

autonomous control by onboard computers. Due to the 

flexibility in control, UAV systems have a wide applications 

in all civilization and military fields, such as search and 

rescue operation, tracking object, delivery product. More 

recent researches relative to UAV application can be found 

in [5-6]. A Quadcopter is a type of UAV with 4 rotors, it has 

advantages compared to other types of UAV such as simply 

mechanic architecture, flexible moving ability in narrow 

spaces with the compact size, and easily manufactured [1-6]. 

Computer vision consists of theories and engineering 

aimed to create artificial systems in order to collect and 

process images or multi-dimensional database using 

cameras. The combination between computer vision and 

other engineering technologies provide many applications in 

science, military and many more. 

Nowadays, experts are outlining positive methodologies 

to solve traffic problems; notably, tracking a crime or 
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supporting victims of a traffic accident. A potential method 

proposed in this paper is to use the UAV as a supporting 

robot since its traveling path is less blocked from the air than 

that of the unmanned ground vehicles (UGVs). On the other 

hand, a difficult problem of UAVs is safety landing. 

Currently, researches on the autonomous landing for UAVs 

is still underway in the world. The purpose is to allow UAVs 

to be capable of landing on ships and trucks, or in the case of 

cyclones and other disasters [4]. This paper presents a 

solution for the autonomous landing of a quadcopter on a 

stationary target. A vision-based method for autonomous 

landing on a target with a quadcopter will be considered. 

This method includes a searching and a landing part. 

The process is divided into 3 parts: 1 – detecting position, 

2 – predicting position and 3 – autonomous landing. In the 

first part, images are collected by a camera and then 

processed by a Raspberry pi 3 Model B using HSV color 

space, thresholding method to detect the X-Y coordinates of 

the target on the 2D image plane. Then, a Kalman Filter is 

applied to predict the near future X’-Y’ coordinates of the 

target in the second part. In the final part, the X’-Y’ 

coordinates value are transformed to electronic signal in 

order to control 4 rotors for landing. In addition, the 

quadcopter stabilization is always guaranteed by using PID 

controllers. Besides the major components in the research, 

some different problems also need to be solved are reducing 

noises for better quadcopter stabilization, and designing the 

most suitable architecture for the quadcopter. 

This paper is organized as follows. Section II firstly 

describes the quadcopter platform, then the PID controllers 

and a complementary filter for the quadcopter stabilization 

are presented as well. Next, a vision-based algorithm for 

object detection using HSV color space and an object 

position prediction method using a Kalman filter are 

discussed in section III. Section IV concerns the control 

algorithm for autonomously landing. Then, section V reports 

the experimental results. Finally, the conclusions of the 

paper are presented in section VI. 

II. QUADCOPTER DYNAMICS AND CONTROL 

A. Experimental Apparatus 

 

Figure 1. The block diagram of the system. 
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Figure 2. The quadcopter platform. 

Figure 1 depicts the block diagram of the system while 

figure 2 shows the hardware platform used in this research. 

The platform used in this research is a DIY hardware 

platform. S500 Quadcopter Frame Kit is increasingly used in 

education and research because of its low cost, robustness 

and easily assembled. The system consists of a 

microcontroller Arduino Uno, 4 Electric Speed Controllers 

(ESCs), 4 Brushless DC motors, an Ultrasonic Sensor HC-

HR04, a MPU 6050 sensor equipped with 6-degree-of-

freedom inertial measurement unit: 3-axis gyroscope and 3-

axis accelerometer, a Raspberry pi 3 model B, a 5.0 MP 

camera for the maximum resolution is 720p, and the 

resolution of 640x480 with 30fps at the bottom to look down 

vertically, and a 3800mAh battery for continuous flights of 

from 10 to 15 minutes. The quadcopter can achieve speed of 

about 3 m/s and operate very well for both indoor and 

outdoor. 

At the begin, the quadcopter takes off under a remote 

controller. The remote controller consists of two components: 

a Transmitter Devo 7 and a Receiver RX-701 with 7 channels 

and the frequency of 2.4GHz. The flights operate under the 

controller by human until the camera is able to observe the 

target in its vision. Thus, the quadcopter can detect the target 

(shown in figure 3), predict its next position in 2D images 

and make the autonomous landing on it. 

 

Figure 3. The target used in the research (60x60cm). 

B. PID Controller 

A controller plays the most important role in automatic 

control systems. The basic idea of a controller is to read a 

sensor, then calculate the desired actuator output. There are 

different controllers which are suitable for various systems 

such as PID, LQR, etc. In the research, the PID controller is 

chosen due to its versatility and facile implementation, while 

also providing a consistent response to the model dynamics 

[6-7]. 

PID (Proportional-Integral-Derivative) controller is the 

commonest control algorithm used in many applications to 

optimize the system automatically. A PID controller is 

capable of controlling the system to meet the quality criteria 

such as short transient time, fast response, and reducing the 

overshoot for the system [5-7]. Figure 4 shows the block 

diagram of a PID controller in a feedback loop.  

 
Figure 4. PID controller. 

In which, r(t) is the desired process value or set-point 

(SP), y(t) is the measured process value (PV), e(t) is the error 

value which is the difference between the SP and the PV. 

The PID controller attempts to minimize the error over time 

by adjustment of a control variable u(t). 

The control function can be expressed mathematically as 

follows: 

u(t) = KP.e(t) + KI.0∫te(t’)d(t’) + KD.de(t)/dt         (1) 

Next part presents PID controllers for the quadcopter 

balancing. The feedback are yaw, pitch and roll angle values 

calculated from the accelerometer sensor MPU 6050. 

C. Quadcopter Dynamics 

The yaw, pitch and roll angles of the quadcopter are 

initialized as figure 5: 

 
Figure 5. The yaw, pitch and roll angles. 



  

Equation to calculate the angles from the gyroscope [2]:  
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Where Ψ, θ, Φ are the angles at the previous time (t-1). 

So, the real values of them at the current time are computed 

as below: 
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Based on x-axis, y-axis and z-axis accelerations 

measured from the accelerometer, the roll and pitch angles 

are computed [2]: 
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Thus, the actual values of roll and pitch angles measured 

by the accelerometer are calculated as below: 
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In addition, in this platform, an ultrasonic sensor is used 

to maintain the altitude of the quadcopter in space. In this 

case, the echo time signal from the ultrasonic sensor is fed 

back to a PID controller. 

Ultimately, apply the yaw, pitch, roll angles and the echo 

time signal to the PID controllers. The system finally is 

structured as figure 6: 

 
Figure 6. The overall control structure of the quadcopter. 

D. Complementary Filter 

As the way an accelerometer measures active forces on 

an object, it does not measure only gravitation but also other 

forces, every small force which is active on the object is 

completely measured and is considered to be a disturbance 

to the measurement. An accelerometer itself is a sensor 

susceptible to interferences. In quadcopters, the driving 

forces of the system, such as the vibration of the motors, will 

also affect the accelerometer. Therefore, using a filter is 

definitely necessary. 

Besides, because of the integration over time, the 

measurement of the gyroscope tends to drift and do not 

return to zero when the system returns to its original 

position. The gyro data is only reliable in a short term and it 

starts to drift in a long term. 

A complementary filter indicates an efficient solution. In 

the short term, the data from the gyroscope (gyrData) is used 

because of its high accuracy. In the long term, the data from 

the accelerometer (accData) is used since it does not drift. In 

the simplest form, the filter formula looks as below [1][7]: 

angle = alpha*(angle + gyrData*dt) + (1-alpha)*accData  

In the equation (6), alpha is the filter coefficient 

(0<alpha<1) and angle is the output of the filter. Roll and 

pitch angle values are updated every iteration in an infinite 

loop. The filter will check whenever the values measured 

from the accelerometer is either reasonable or not. If any 

value is too large or too small, it is a complete disturbance, 

and the complementary filter attempts to decrease the 

influence of this disturbance for the better computation. For 

instance, if the alpha is 0.98, the filter will update the pitch 

angle and roll angle for calculation by taking 98% of the 

current values calculated by the gyroscope and an additional 

2% of the angle values computed by the accelerometer. It is 

always guaranteed that the measured values will not drift 

and also are very precise in the short term. Figure 7 shows 

the original signal of roll angle measured from the 

accelerometer over time (blue) and the processed signal with 

a complementary filter (red). It is facile to realize that the 

blue one is easily affected by noise and the red one is a 

better input for the controller.  

 
Figure 7. Complementary filter. 

III. A VISION-BASED METHOD TO DETECT AND 

PREDICT AN OBJECT POSITION 

This section presents the first main task in the paper, the 

vision-based method to detect and predict the position of a 

target and then land on it. 

A.  Color Detection 

Generally, a photograph taken from a camera is formatted 

as a 3-color RGB color image. However, in the field of image 

processing, the color space is transferred to HSV because of 

its certain benefits. HSV is a color space commonly used in 

image editing, image analysis and computer vision. This 

color space is based on three parameters to describe colors: 

Hue (H), Saturation (S), and Value (V). Figure 8 depicts 

HSV color space: 

(2) 

(4) 

(5) 

(6) 

(7) 

(3) 



  

 
Figure 8. HSV color space. 

The circle is the hue representation field (H), starting at 

the red primary at 0°, passing through the green primary at 

120° and the blue primary at 240°, and then back to red at 

360°. The brightness value (V) is represented by going from 

the bottom up to the top of the cylinder. At the bottom of the 

cylinder, the value V is 0, the smallest, and the top of the 

cylinder is the brightest (V=1). Moving from the center of the 

cylinder to the side surface of the cylinder is the saturation of 

the color (S), S=0 for the center where the color is the lightest 

and S=1 on the side surface of the cylinder, where the color 

value is most dense. Thus, each value (H, S, V) fully 

describes the hue, saturation, and brightness of a specific 

color [3][8]. 

The object detection task in the research was executed in 

Python and OpenCV, a library of programming functions 

mainly aimed at real-time computer vision. In the OpenCV 

library, the HSV color space has been slightly modified, the 

H value is not from 0° to 360° but from 0° to 180°, and the 

values of S and V are ranged from 0 to 255. Figure 9 presents 

a window with track bars to determine the H, S and V values 

for color detection with OpenCV. 

 

Figure 9. Track bars to determine the H, S and V values for 
color detection with OpenCV. 

Once the color is determined using HSV, the thresholding 

method is used to convert the image into binary format. After 

that, contours searching function is executed for drawing the 

bounding box to cover the current location of the target. The 

current position is defined as the center of the bounding box. 

Figure 10 describes all of the processes presented as stated 

above. 

 
Figure 10. (a) original image, (b) converted HSV image,  

(c) thresholded image, (d) output image with the detection. 

B. Kalman Filter for Predicting Position 

A common hypothesis in many vision-based tracking 

algorithms presented so far is that the motion of an object 

will change very little between two subsequent frames. Thus 

an object’s position in the actual frame is an approximation 

of its position in next frames [9]. 

This paper aims to exploit the concept of object 

trajectory. The assumption is that the change in the position 

of a object in each motion frame follows a mathematical 

model over time. And the motion vector is modeled as a 

discrete-time linear system described by the following 

equation [9]: 

x[t+1] = F x[t] + v[t]                       (8) 

In the equation above, x[t] represents the system state 

and describes the exact value of each coefficient of the 

motion vector at time t, consists of the first derivative and 

the second derivative as well, matrix F represents the second 

order kinetic model, v[t] stands for errors made by the 

modeling process. This error is defined as a sequence of 

zero-mean, white, Gaussian process noise [9]. 

In line with the equation (1), a measurement equation as 

follow is defined: 

z[t+1] = H x[t+1] + w[t+1]                (9) 

This equation describes the relationship between state 

observation z[t] and system state x[t]. This relationship is 

determined by the matrix H and by the error w[t]. The error 

modeled by w[t] calculates all possible inaccuracies in the 

estimation of motion [9]. 

Applying a Kalman filter for the system determined by 

the equation (8) and (9), it is possible to perform a recursive 

motion tracking. At each new observation of the object 

motion, z[t] is obtained through the estimation of motion. 

According to the measured observations and the kinetic 

models, the Kalman filter updates the state vector x[t]. This 

filter integrates over time the available temporal information 

for each object [9]. 

However, Kalman filter does not always provide a 

correct prediction. This commonly happens when objects are 

not predictable and that mislead the Kalman filter. In this 

case, for better results, a rough prediction is used, that is the 



  

last estimated motion of the object, x[t]. This will represent 

a first guess of the future object position and motion [9]. 

A test is always necessary to decide when it is better to 

use, as a prediction, the last estimated motion, x[t], instead 

of using the Kalman motion prediction x[t+1=t]. To solve 

this, a technique was proposed which is based on the motion 

compensation error estimation. The predicted object is 

compensated with both x[t] and x[t+1=t]. The motion 

compensation between these two that produces the smaller 

mean square error is chosen as the better prediction [9]. 

Figure 11 indicates the Kalman filter equations which are 

divided into two parts, “prediction” and “correction”.  The 

“prediction” part estimates the motion or the next state and 

the "correction" part is responsible to calculate error then 

update the filter coefficient for the next prediction. Figure 12 

shows the predictions of the target position in 2D image, the 

red circles are the actual position detections and the green 

circles are the predictions of the next target position. 

 
Figure 11. Kalman Filter equations. 

 

Figure 12 (a-d). Target predictions. 

IV. CONTROL ALGORITHM FOR LANDING 

As stated above, the predicted position of the target has 

been determined. This section presents the control algorithm 

for landing using the predicted coordinates of the target to 

generate an autonomous landing quadcopter control signal. 

The idea behind the algorithm is that the quadcopter will 

autonomously turn left or right for adjusting its position in 

space by changing the set-points of roll and pitch angles so 

that the distance between the center point of the camera 

frame and the predicted coordinates as small as possible. In 

this case, the camera frame has a size of 320x240, the 

distance between the center point of the camera frame and the 

predicted coordinates is compared to 50 pixels in 2D image 

with x-y coordinates, that distance is computed as below: 

      Distance = sqrt[ (160-x)^2 + (120-y)^2 ]        (10) 

Where (160, 120) is the x-y coordinate of the frame 

center. When the distance is smaller than 50 pixels, the 

throttle is adjusted to be decreased regularly then the 

quadcopter can land on the target as accurate as possible. The 

flow chart for the landing algorithm is presented in figure 13. 

 

Figure 13. The flow chart of the landing algorithm. 

V. EXPERIMENTAL RESULTS 

Figure 14 (a-d) and 14 (e-h) depict the experiments 

which were executed indoor at the altitudes of 100cm and 

150cm above the ground. 

 
Figure 14 (a-h). The indoor experiments. 



  

The results showed that the quadcopter was able to land 

on the limited area of the target, yet with low accuracy. 

 
Figure 15 (a-i). Positions of landing. 

Figure 15 (a-i) indicate some more experiments of 

landing. The landing position changes in different 

experiments. There are some analysis: 

Figure 15 (a-c): The quadcopter is able to complete 

landing with final positions are in the limited area of the 

target, yet not high accuracy. The reason might be that the 

rotor speed is reduced too fast when landing, therefore the 

quadcopter gets out of the balanced state. 

Figure 15 (d-f): The quadcopter is able to complete 

landing with higher accuracy than previous because of the 

improvement in the reduction of rotor speed. 

Figure 15 (g-i): The experiments that the quadcopter 

cannot complete landing and gets out of the limited area of 

the target. The reason is that the quadcopter cannot observe 

and detect the target in its vision. 

VI. CONCLUSIONS 

After many efforts of research and development, we have 

designed and assembled a complete quadcopter model. 

Besides, an autonomous landing method based on vision 

with a quadcopter platform is presented in this paper. The 

experiments were executed indoor many times at different 

altitudes of landing. During the experimental time, there are 

many problems that we had to face, especially in the landing 

part. After improving the landing algorithm and fine-tuning 

the code, the quadcopter now operates with good results. 

The outcome proved that the quadcopter is capable of 

autonomously landing on a stationary target very well with 

80% accuracy by using a single camera attached to the 

bottom, it means that there are 8 out of 10 times the 

quadcopter land successfully on the target. 

An improvement for the system to be capable of 

autonomously landing on a moving target with a higher 

accuracy will be proposed in the future. 
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