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Abstract— Fire is considered one of the most serious threats 

to human lives which results in a high probability of fatalities. 

Those severe consequences stem from the heavy smoke emitted 

from a fire that mostly restricts the visibility of escaping victims 

and rescuing squad. In such hazardous circumstances, the use 

of a vision-based human detection system is able to improve the 

ability to save more lives. To this end, a thermal and infrared 

imaging fusion strategy based on multiple cameras for human 

detection in low-visibility scenarios caused by smoke is proposed 

in this paper. By processing with multiple cameras, vital 

information can be gathered to generate more useful features 

for human detection. Firstly, the cameras are calibrated using a 

Light Heating Chessboard. Afterward, the features extracted 

from the input images are merged prior to being passed through 

a lightweight deep neural network to perform the human 

detection task. The experiments conducted on an NVIDIA 

Jetson Nano computer demonstrated that the proposed method 

can process with reasonable speed and can achieve favorable 

performance with a mAP@0.5 of 95%. 

Keywords— firefighter rescue, smoke scenarios, infrared and 

thermal camera image fusion, human detection. 

I. INTRODUCTION 

Fire accident is one of the most tragic occurrences that 
people have to deal with. The importance of detecting and 
rescuing victims in those situations cannot be overstated, as it 
can be a matter of life and death. According to the National 
Fire Protection Association, in 2019 alone, there were an 
estimated 1,291,500 fires in the United States, causing 3,704 
civilian deaths, 16,600 civilian injuries, and $14.8 billion in 
property damage [1]. In addition to the direct impact on human 
lives and property, fire and smoke also have negative impacts 
on the environment and the economy [2], [3]. Therefore, there 
always exists the need to develop effective detection and 
rescue systems to minimize those unforeseen damages. 

However, detecting and rescuing victims in fire accidents 
is a challenging mission due to the restricted visibility caused 
by smoke and debris. Traditional methods such as visual 
inspection and manual search are not only time-consuming, 

labor-intensive, and often ineffective, but also dangerous, 
directly threatening the safety of firefighters [4], [5]. This is 
where camera-based detection systems can be extremely 
useful. In recent years, cameras and sensors have become 
increasingly popular for detecting objects in fire search and 
rescue scenarios [6]. Thermal cameras and infrared (IR) 
cameras are commonly used for this purpose [7]. 
Nevertheless, each type of camera has its advantages as well 
as drawbacks. In an environment filled with substantial 
smoke, IR cameras lose clarity, reduce reliability, and even 
become blinded (Fig. 1a), whereas thermal cameras 
demonstrate their effectiveness since they gather the heat 
emitted from human bodies without being affected by smoke 
(Fig. 1c). However, if it had slight smoke, but there was a 
source of heat near enough to the people, as shown in (Fig. 
1b), it would result in confusion for the thermal camera when 
trying to search for a human inside of a fire. IR camera 
information (Fig. 1d) can be used at this time to make 
decisions. Therefore, in such cases, a fusion approach 

  

Fig. 1. Comparison between infrared and thermal cameras in two typical 

fire scenes 

* These authors contributed equally to this work. 
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combining the strengths of the two cameras can yield better 
detection results. 

Multi-sensor fusion has been an important research area in 
recent years, especially in the field of computer vision. This 
technique combines the signals measured by multiple sensors 
to create a more complete and accurate description of the 
environment. There are several methods of multi-sensor 
fusion including data-level fusion, feature-level fusion, 
decision-level fusion, and sensor-level fusion. Among them, 
data-level fusion is the most used method, which directly fuses 
the raw data from multiple sensors [8]. One common multi-
sensor data fusion method is the fusion of thermal and RGB 
images, which have been used for human detection [9]. 
Another approach involves fusing data from multiple sensors 
at the decision-level, such as combining texture and color 
features extracted from multimodal data [10]. However, 
conventional multi-sensor fusion methods often rely on hand-
crafted features, which can be time-consuming and may not 
generalize well to different environments. Recently, deep 
learning-based methods have emerged as a promising 
approach for multi-sensor fusion. For example, a deep neural 
network has been proposed for fusing data from multiple 
sensors, including camera data and projected sparse radar, for 
object detection [11]. 

Deep neural networks (DNNs) have achieved remarkable 
success in various computer vision tasks [12], [13]. In the 
context of human detection, DNN-based methods have been 
shown to outperform traditional methods in terms of both 
accuracy and speed. There are many successful models in this 
area, such as YOLO [14], Faster R-CNN [15], and SSD [16]. 
Among them, YOLO is widely used because of its fast speed 
and high accuracy. In [17], a lightweight version of YOLO, 
YOLOv3-tiny, was proposed for vehicle and pedestrian 
detection. The model was optimized for real-time 
performance and achieved high accuracy on pedestrian 
detection tasks. Another interesting approach is using DNNs 
to fuse multispectral images for human detection. In [18], a 
deep convolutional neural network was proposed to fuse RGB 
and thermal images for pedestrian detection. This method 
used a multiscale feature extraction network and achieved 
high accuracy on pedestrian detection tasks. The results 
showed that the method achieved better detection accuracy 
than that of using each sensor alone. Overall, the fusion of data 
from multiple sensors can improve the accuracy and 
robustness of object detection, while DNNs are able to achieve 
state-of-the-art performance in terms of both accuracy and 
speed. 

Given the aforementioned challenges and reasons, this 
paper proposes a human detection strategy based on the fusion 
of IR and thermal images that can be incorporated into 
detection and rescue systems, such as Drones or Firefighting 
Robots. As indicated in Fig. 2, our implementation hardware 
comprises an NVIDIA Jetson Nano computer, an IMX219-77 
IR Camera integrated with two infrared lights to enhance the 
visibility in dark scenes, and a PureThermal Mini Pro JST-SR 
Camera (with FLIR Lepton 3.5). Our primary contributions 
are divided into three aspects. In order to ensure that the 
cameras can be fused successfully, we first calibrated both 
cameras using the Light Heating Chessboard technique and 
aligned the images with appropriate key points. Then, to 
gather data for training and testing, a suppositional scenario of 
people calling for help while surrounded by dense smoke was 
developed. Finally, we customized a lightweight deep neural 

network based on YOLOv4-Tiny [19] and employed IR and 
Thermal camera fusion method at the neck of the network for 
efficient human detection. The experimental results showed 
that the proposed system can achieve real-time response and 
the mAP@0.5 accuracy of up to 95%. 

The remainder of the paper is given as follows. Section II 
describes the proposed strategy, which includes a lightweight 
deep neural network designing and camera calibration 
methods. The experiments including the dataset collection and 
editing, the training procedure, and the experimental results 
are presented in Section III. Finally, Section IV concludes the 
paper and discusses potential research directions in the future. 

II. PROPOSED METHOD 

In this section, we discuss the methods adopted to 
synchronize the data captured by IR and thermal cameras. 
Following that, we introduce a multi-sensor feature fusion 
strategy designed based on the YOLOv4-Tiny network 
architecture, a well-known lightweight deep learning model. 

A. Geometric Camera Calibration  

The Light Heating Chessboard technique is a two-in-one 
geometric camera calibration method that requires exposing 
the chessboard to sunlight as described in Fig. 3a. We can 
adjust IR cameras using the same methods as with regular 
visible cameras. As for the case when capturing pictures with 
a thermal camera, there is a contrast between the black and 
white squares due to unequal heat absorption of different 
colors. This technique is crucial to ensure that the image points 

IR Camera

IR Lighting

Thermal Camera

NVDIA Jetson 
Nano

 

Fig. 2. The hardware for human detection consists of infrared and thermal 

cameras 

 
Fig. 3. Image alignment procedure: a) Chessboard is heated by sunlight, b) 
Chessboard original image, c) Undistortion images, d) Perspective 
transformed image 
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(uc ,vc) are appropriately mapped to their corresponding real-

world coordinates (xw, y
w

, zw) as the formulas below: 
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 After gathering a number of photos of the chessboard with 
the thermal and IR cameras, we use the Camera Calibration 
Toolbox of MATLAB to estimate the intrinsic matrix and 
distortion coefficient. The intrinsic matrix or camera matrix 
(Ac) contains the information of internal parameters of the 
camera, such as the focal length and principal point. The 
distortion coefficient corrects any lens distortion that may be 
present in the images. There are two basic kinds of distortion 
with total 5 variables, including radial distortion (k1, k2, 𝑘3) 

and tangential distortion (p
1
, p

2
). The formula below, where 

(𝑥, 𝑦)  is the input picture size, represents both types of 
distortions: 
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B. Image Alignment 

The aligned image refers to an image that has been 

processed and transformed to match the position, orientation, 

and scale of another image. We selected the IR image with 

the longer focal length as the foundation and the thermal 

image was transformed so that they overlap together. This 

approach helps us to unify the dataset since we just need to 

determine only one set of bounding box coordinates of 

objects in each scene and assures that the object is present in 

both the thermal and IR images. Choosing four pairs of 

corresponding points from every four corners in the 

chessboard of the undistorted camera image is the first step 

in the procedure. We employed the following calculation 

formula to obtain the homography matrix using these 

corresponding locations: 
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The homography matrix is a 3x3 transformation matrix 

that maps points from one image to their corresponding 

points in the other image. With the aid of this matrix, we can 

conduct a perspective transformation on the thermal image in 

order to have it partially aligned with the IR image. All the 

procedures for the resulting image alignment are given in Fig. 

3.  

C. YOLOv4-Tiny-based Feature Fusion Deep Neural 

Network 

The concept of feature fusion combines features from 
numerous sources to enhance performance in a variety of 
computer vision tasks. YOLOv4-Tiny is a variant of the 
popular YOLO (You Only Look Once) object detection model 
that uses a compact and more efficient network architecture, 
making it ideal for real-time applications [19]. We modified 
the YOLOv4-Tiny network to carry out feature fusion with the 
inclusion of two distinct kinds of input images, both with 
dimensions of 416x416. For the objective of extracting 
features, these images are passed through the CSPdarknet53-
Tiny backbone network [20], [19], [21]. However, we employ 
the Mish function [22] as the activation function instead of the 
Leaky ReLU function. In order to keep the model from 
overfitting, the Mish function has the ability to self-adjust the 
magnitude of the derivative. Other studies also show that the 
Mish function offers faster convergence and greater accuracy 
when compared to the Leaky ReLU function due to its smooth 
curve being more continuous. The feature pyramid network 
(FPN) structure is utilized at the neck of the architecture to 
create multi-scale feature pyramids which increase the feature 
representation of images. 

Our proposed fusion method also takes place in the part by 
interfering with a concatenate layer to combine two pairs of 
informative matrices with dimensions of 26x26 and 13x13. 
These outcomes are then fed to the YOLO model’s head to 
classify and predict bounding boxes. Even though two images 
are passed through the input, we only use a single bounding 
box coordinate because we previously cropped the redundant 
parts of both images to bring them to the same center and 
image size. The completely proposed lightweight network 
architecture is illustrated in Fig .4 

In our modified network, the loss function is kept identical 
to that in the original model. Multiple losses, including 
localization loss, confidence loss, and class loss, are 
combined. The localization loss measures the difference 
between the predicted bounding box and the ground truth 
bounding box. The confidence loss determines how confident 
the model is in its prediction of an object being present in the 
bounding box. The class loss finds out the difference between 
the predicted class probabilities and the ground truth class 

probabilities. The final loss is a weighted sum of the above 
three loss terms. 

Concate(26,26,512)

Concate(13,13,1024)

Conv Conv + UpSampling Concate(26,26,1024)

Yolo Head Yolo Head

Conv_BN_Mish(104,104,64)

Conv_BN_Mish(208,208,32)

CSPBlock(52,52,128)

CSPBlock(26,26,256)

CSPBlock(13,13,512)

Conv_BN_Mish(13,13,512)

CSP Darknet53 - Tiny

Conv_BN_Mish(104,104,64)

Conv_BN_Mish(208,208,32)

CSPBlock(52,52,128)

CSPBlock(26,26,256)

CSPBlock(13,13,512)

Conv_BN_Mish(13,13,512)

CSP Darknet53 - Tiny

Neck: FPN + FF

IR Image (416,416,3) Thermal Image (416,416,3)

 

Fig. 4. Deep neural network architecture  with IR and thermal feature fusion 
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Adam optimizer [23] is typically used in YOLOv4-tiny. 
Adam is a popular gradient-based optimization algorithm that 
brings together the advantages of the AdaGrad and RMSProp 
algorithms. It uses adaptive learning rates to update the 
parameters of the model during training, which can help 
accelerate convergence and improve the overall performance 
of the model. After integrating all the revisions, our network 
architecture has a total of approximately 6 million parameters. 

III. EXPERIMENTS AND RESULT 

A. Dataset and Training 

In our study, we aimed to create a diverse and generalized 
dataset for the purpose of simulating fire situations. To 
achieve this, we staged various scenarios by releasing white 
smoke into a closed room and positioning people in different 
ways to symbolize people asking for assistance. Our 
collection of images contains a variety of situations, such as 
changing the number of people in the frame, their body poses, 
and the camera's distances and angles of view. In order to 
avoid the model from inferring information based solely on 
the color of clothing, we also made sure that we altered the 
outfits of the people in the picture. 

A total of 3,000 photos make up our dataset, with half of 
them captured by IR camera and the rest by the thermal 
camera. To ensure that corresponding images from the two 
cameras were captured at the same time, we used the Python 
threading programming technique during the collection 
process. With the camera matrix and distortion coefficients 
discovered during camera calibration, photos were 
undistorted. The thermal image was subsequently transformed 
using the wrapPerspective function of OpenCV and the 
homography matrix we computed using the image alignment 
approach so that when we placed it over the IR image, the two 
images would overlap. Following that, we went on to label the 
photos, only labeling the IR images and mapping them to the 
associated Thermal images because both images are basically 
identical. Several illustrations of our dataset can be seen in 
Fig. 5. 

The training was carried out by a laptop equipped with a 
Core-i7 processor running at 2.60 GHz, 8GB of RAM, and an 
integrated NVIDIA GeForce GTX 1650 with 4GB of RAM. 
We used hyper-parameters such as 100 epochs, batch size of 
32, and learning rate of 0.003. The training procedure took a 
total of two hours. 

B. Experimental Results 

For human detection in real-time, we present the results 
and comparisons of our proposed method. As demonstrated in 
Fig. 6, the model can detect humans in a variety of positions 
and postures, and it achieves excellent detection accuracy 
even in the presence of occlusions or overlapping individuals. 

To evaluate the performance of the proposed method, we 
use a validation set to compute several evaluation metrics as 
shown in Table I, including average IoU, precision, recall, F1-
Score, and mAP@0.5. To further assess the performance of 
our method, we run it on a separate test set and the results are 
summarized in Table II. Using each single camera, we also 
compare our method with YOLOv4-tiny and YOLOv5s, one 
of the lightest versions of YOLOv5. The comparison criteria 

 

Fig. 5. The diversity of datasets depicting persons in smoke. 

 

Fig. 6. Human detection implementation in a dense smoke environment 

with NVIDIA Jetson Nano (better to see in zoom) 

TABLE I. MODEL TRAINING RESULTS 

Avg. IoU Recall Precision F1-Score mAP@0.50 

71.89 % 0.94 0.89 0.91 96.97 

 

TABLE II. PERFORMANCE COMPARISON 

Models 

Image Types Metrics 

Thermal IR mAP@0.5 mAP@0.5:0.95 FPS 

YOLOv4-
Tiny 

  87.98 68.32 18 

  73.32 42 .85 18 

YOLOv5s 

  91.37 77.45 15 

  79.45 63.84 15 

Ours   95.92 80.23 15 
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include mAP@0.5, mAP@0.5:0.95, and frame-per-second 
(FPS).  Our findings demonstrate that our method outperforms 
both YOLOv4-tiny and YOLOv5s in terms of mAP@0.5 and 
mAP@0.5:0.95 on the test dataset. Specifically, our method 
achieves a significantly higher level of accuracy, with 
improvements ranging from 3 to 38 percent compared to the 
baseline models. These results highlight the superior 
performance of our approach in accurately detecting and 
localizing objects in the examined dataset. When considering 
execution speed, our solution operates slightly slower than 
YOLOv4-tiny, resulting in a decrease of 3 FPS. However, in 
comparison to YOLOv5s, our method performs competitively 
at the same speed of 15 FPS. This indicates that our solution 
strikes a balance between accuracy and speed, offering an 
effective trade-off for real-time object detection tasks. 

IV. CONCLUSION 

In this paper, we present a human detection system that 
can be used in search and rescue situations with heavy smoke. 
By utilizing the proposed feature fusion strategies based on 
deep learning, human detection accuracy can be enhanced in 
such difficult circumstances. This crucial study can greatly 
enhance the chances of people surviving in an emergency fire. 
This work has the potential to lead to the integration of the 
technology into unmanned rescue vehicles, such as drones and 
autonomous cars. Future research can concentrate on 
enhancing the execution time and increasing the application 
situations of the proposed technology. 
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