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Abstract—Projection onto Convex Set (POCS) is a powerful
signal processing tool for various convex optimization problems.
For non-intersecting convex sets, the simultaneous POCS method
can result in a minimum mean square error solution. This
property of POCS has been applied to clustering analysis and
the POCS-based clustering algorithm was proposed earlier. In
the POCS-based clustering algorithm, each data point is treated
as a convex set, and a parallel projection operation from every
cluster prototype to its corresponding data members is carried
out in order to minimize the objective function and to update the
memberships and prototypes. The algorithm works competitively
against conventional clustering methods in terms of execution
speed and clustering error on general clustering tasks. In this
paper, the performance of the POCS-based clustering algorithm
on a more complex task, embedding clustering, is investigated in
order to further demonstrate its potential in benefiting other
high-level tasks. To this end, an off-the-shelf FaceNet model
and an autoencoder network are adopted to synthesize two
sets of feature embeddings from the Five Celebrity Faces and
MNIST datasets, respectively, for experiments and analyses.
The empirical evaluations show that the POCS-based clustering
algorithm can yield favorable results when compared with other
prevailing clustering schemes such as the K-Means and Fuzzy
C-Means algorithms in embedding clustering problems.

Index Terms—POCS-based clustering, machine learning, un-
supervised learning, high-dimensional data, MNIST

I. INTRODUCTION

Clustering is an unsupervised data analysis technique that
aims to segregate data points in a given dataset that have
similar traits and assign them to clusters [1]. Clustering is one
of the most fundamental tasks that has been widely deployed
in numerous machine learning-driven automation systems [2]–
[4]. Popular clustering approaches find homogeneous sub-
groups of data points that have similar characteristics based
on optimizing some predefined criteria. The most well-known
criterion is the clustering error measure which is defined as
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the sum of the distances from cluster centers to all of their
corresponding member points [5]. In this sense, one of the
most classical methods for general clustering tasks is the
K-Means clustering algorithm, which applies the Euclidean
distance to measure the similarities among data points [1].
The K-Means algorithm alternates between assigning cluster
membership for each data point to the nearest cluster center
and computing the center of each cluster as the prototype
of its member data points. The K-Means algorithm’s training
procedure is terminated when there is no further update in the
assignment of instances to clusters. However, the convergence
process of the K-Means algorithm is considerably dependent
on the initialized prototypes, in addition, this classical cluster-
ing algorithm is known to be sensitive to noise and outliers
[5]–[7].

Another widely used clustering algorithm is the Fuzzy C-
Means (FCM) clustering algorithm [8]. Unlike the K-Means
algorithm, a data point can concurrently belong to multiple
subgroups in the FCM algorithm. A membership function is
adopted to represent the degree of certainty for whether a
data point belongs to a certain cluster. The performance of
the FCM algorithm, however, is also highly dependent on
the selection of the initial prototypes and membership values
[8]. Moreover, the disadvantages of the FCM clustering al-
gorithm include extended computational time and incapability
in handling noisy data and outliers [8]. In order to handle
the computational complexity and upgrade the convergence
speed of the FCM algorithm, Park and Dagher introduced the
Gradient-Based Fuzzy C-Means (GBFCM) algorithm [9] in
which the minimization process of the objective function is
proceeded by solving two equations alternatively in an iterative
fashion.

On the other hand, Projection onto Convex Set (POCS) is
a robust tool for signal synthesis and image restoration which
was introduced by Bregman in the mid-1960s [10]. Bregman
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Fig. 1. The projection of a point x onto a set A (x /∈ A) is the unique
element y in A which is closest to x.

has shown that successive projections between two or more
intersecting convex sets converge to a point that exists in
the intersection of the convex sets. If the convex sets are
disjoint, the sequential projections converge to greedy limit
cycles which are dependent on the order of the projections.
For non-intersecting convex sets, the method of simultaneous
projections can result in a minimum mean square error solution
[11]. This convergence property of the POCS method has been
applied to clustering problems and the POCS-based clustering
algorithm was proposed in [12] which has been proved to
be able to perform competitively when compared with other
conventional clustering approaches such as the K-Means and
FCM algorithms. The POCS-based clustering algorithm treats
each data point as a convex set and projects the prototype
of every cluster to each of its constituent instances. The
projections are convexly combined to optimize and compute
a new set of center prototypes and to minimize the objective
function. In this paper, we further examine the effectiveness
and efficiency of the POCS-based clustering algorithm for
complex clustering tasks such as feature embedding clustering
in order to demonstrate its potential in benefiting other high-
level tasks [13]. To this end, two sets of feature embeddings
are prepared for experiments and analyses. The first set is
obtained by utilizing an off-the-shelf FaceNet model [14] to
extract embeddings from the image data of the Five Celebrity
Faces dataset [15], and the other set is prepared by training
an autoencoder network to learn the representations of hand-
written digit images of the MNIST database [16].

The rest of this paper is structured as follows. Section II
briefly reviews the concepts of convex sets and the POCS-
based clustering algorithm. The process of preparing feature
embedding datasets is presented in Section III. In Section IV,
the performance of the POCS-based clustering algorithm on
feature embedding clustering tasks is examined and compared
with those of other prevailing clustering approaches including
the K-Means and FCM algorithms. Section V concludes the
paper.

II. PRELIMINARIES

A. Convex Set

Convex set has been one of the most classical and powerful
concepts in optimization theory [10]. A set of data points is
called a convex set if it has the following property: given a
non-empty set A which is the subset of a Hilbert space H

Fig. 2. Graphical interpretation of parallel POCS for disjoint convex sets.

(A ⊆ H), ∀x1, x2 ∈ A and ∀λ ∈ [0, 1], A is convex if the
following holds true:

x := λx1 + (1− λ)x2 ∈ A. (1)

Note that if λ = 1, then x = x1, and if λ = 0, then x = x2.
In this sense, x lies on the line segment joining x1 and x2

when the set is convex.

B. Projection onto Convex Set (POCS)

The concept of projecting a point to a plane is utilized to
solve many optimization problems such as finding a point on
the plane that has the minimum distance from the center of
projection. For a given point x /∈ A, the projection of x onto
A is the unique point y ∈ A such that the distance between x
and y is minimum. If x ∈ A, the projection of x onto A is x.
The optimization task can be expressed as:

y = argmin||x− y∗|| (2)

where y∗ denotes all the points that belong to the set A. A
graphical illustration of the projection of a point onto a convex
set is depicted in Fig. 1.

C. Parallel POCS

In the parallel POCS method, a point is projected to all con-
vex sets concurrently. All the projections are combined con-
vexly with corresponding weight values to solve minimization
problems. Given a set of n convex sets C = {ci|1 ≤ i ≤ n},
the convergence of the simultaneous weighted projections can
be computed as follows:

xp+1 = xp +

n∑
i=1

wi(Pci − xp), p = 0, 1, 2, ... (3)

where xp represents the pth projection from the initial point
x0, Pci is the projection of xp onto convex set ci and wi is
the weight of importance of the projection such that:

n∑
i=1

wi = 1. (4)



Fig. 3. Face image samples of one class from the Five Celebrity Faces dataset.

The main advantages of the parallel mode of POCS when com-
pared with the alternating one include computational efficiency
and improved execution time [12]. When the convex sets are
disjoint, the parallel POCS method converges to a point that
minimizes the weighted sum of the distances from the point
to the sets, which can be expressed as:

x∞ = argmin

n∑
i=1

wi||x− Pci || (5)

where x∞ is the convergence point. A graphical illustration
of the parallel POCS method is presented in Fig. 2.

D. POCS-based Clustering Algorithm

For disjoint convex sets, the parallel mode of the POCS
method converges to a minimum mean square error solution
[11]. This property has been applied to clustering problems
and the POCS-based clustering algorithm has been proposed
earlier in [12]. The POCS-based clustering algorithm considers
each data point as a convex set and all data points in the
cluster as disjoint convex sets. Given a set of data points with
a predefined number of clusters k, the objective function of
the algorithm is defined as:

J =

k∑
j

nj∑
i=1

wji||xj − Pji|| (6)

in which the importance weight wji is computed as:

wji =
||xj − dji||∑nj

m=1 ||xj − dm||
(7)

where nj denotes the number of data points in one cluster,
while Pji is the projection of the cluster prototype xj onto
the member point dji.

At the beginning, the POCS-based clustering algorithm
initializes k cluster prototypes by adopting the prototype
initialization method of the K-Means++ algorithm [17], then
based on the Euclidean distance to the prototypes, each data
point is assigned to one of the clusters which has the minimum
distance to the data point. Until convergence, the algorithm
computes new cluster prototypes using the following equation:

xj,p+1 = xj,p +

nj∑
i=1

wji,p(Pji,p − xj,p), p = 0, 1, 2, ... (8)

Input OutputEmbeddingEncoder Decoder

Fig. 4. Typical diagram of an autoencoder network.

where p is the iteration index. Starting from an initial point
xj,0, the projections converge to a point, xj,∞, that can
minimize the objective function (6).

III. DATA PREPARATION

This section presents the preparation of feature embedding
data. In order to evaluate the robustness and applicability of the
POCS-based clustering algorithm to feature embedding clus-
tering tasks, experiments on two synthetic feature embedding
datasets have been conducted. We adopt FaceNet [14] and a
plain autoencoder model [18] to extract feature embeddings
from the Five Celebrity Faces [15] and MNIST [16] datasets
for experiments and analyses.

A. FaceNet

FaceNet [14] is a face recognition model proposed by
researchers at Google in 2015 that has achieved state-of-the-
art results on various face recognition benchmarks. FaceNet
can be utilized to extract high-quality face embeddings from
input facial images, those embeddings afterward can be used
to train and develop a face recognition system.

The first dataset used in this study is the Five Celebrity
Faces dataset [15], which is a small dataset containing the
photos of five celebrities: Ben Afflek, Elton John, Jerry Se-
infeld, Madonna, and Mindy Kaling. The dataset is divided
into training and validation sets. However, as this is a small
dataset, we merge the two image sets to obtain a single dataset
of 118 images for clustering tasks. FaceNet is adopted to
extract feature embeddings from all 118 face images. The
input and output shapes of FaceNet are 160x160x3 and 128x1,
respectively. As the result, we can obtain 118 face embeddings
with a size of 128x1 which is used as the input data for the
clustering experiments. Several image samples of one class
from the Five Celebrity Faces dataset are shown in Fig. 3.

B. Autoencoder

Autoencoder (AE) [18] is a type of artificial neural network
that is used to learn efficient embeddings of unlabeled data.
A general AE model is comprised of three main components:
encoder, code, and decoder, as shown in Fig. 4. The input and
output of an AE network generally have the same shape. The
encoder compresses input data into a low-dimensional code
(or representation) and the decoder reconstructs the code to



Fig. 5. Reconstructed images on MNIST dataset using the autoencoder model described in the paper (top: input image, bottom: reconstructed image).

TABLE I
DESCRIPTION OF THE AE MODEL USED IN THIS STUDY.

Part Layer Input Shape Output Shape #Params

Input Input 784x1 784x1 0

Encoder
Dense 784x1 128x1 100,480
Dense 128x1 64x1 8,256
Dense 64x1 32x1 2,080

Embedding 32x1 32x1 0

Decoder
Dense 32x1 64x1 2,112
Dense 64x1 128x1 8,320
Dense 128x1 784x1 101,136

Output Output 784x1 784x1 0

produce the output data which is a copied version of the input.
By training the network to perform a copying task, the codes
or embeddings are optimized to capture useful properties of
the input data. As the result, those embeddings can be used for
downstream tasks such as clustering and classification. AE-like
structured models have been widely applied to various tasks
such as feature extraction [19], image denoising [20], image
dehazing [21] [22], and anomaly detection [23].

For the sake of simplicity, in this paper, we adopt a simple
AE model with 728-d input/output and 32-d embedding, both
the encoder and decoder have 3 hidden layers with ReLU
activations. A detailed description of the used AE model is
shown in Table I. The AE model is trained to learn the
embeddings of MNIST dataset [16]. MNIST dataset contains
60,000 and 10,000 gray-scale images for training and valida-
tion, respectively, each image data has a resolution of 28x28
pixels. We flatten all the images to obtain 784-d vectors which
are utilized as input of the network.

The processor used in the experiments is Intel(R) Core(TM)
i7-4790K CPU @ 4.00GHz. We train the AE model in 100
epochs using the Adam optimizer [24] with a learning rate of
0.001. Several image reconstruction results and the learning
curves are shown in Fig. 5 and Fig. 6, respectively. After
the model is optimized on the training set, we extract the
embeddings from the validation set for the clustering task. As
the result, we obtain a set of 10,000 32-d feature embeddings.

IV. EXPERIMENTS AND RESULTS

In order to evaluate the robustness and applicability of the
POCS-based clustering algorithm to complex clustering tasks

Fig. 6. Training curves of the used AE model on the MNIST dataset.

such as feature embedding clustering, we conduct various
experiments and analyses to compare its performances in
terms of clustering error and execution speed with those of
other prevailing clustering methods such as the K-Means
and FCM algorithms. In all experiments, each algorithm is
executed 20 times, then the mean and standard deviation
of clustering error and execution speed are measured and
presented. We conduct the comparison experiments under
two conditions: same initial prototypes and different initial
prototypes. Specifically, in the first condition, we compare
the performance of the POCS-based clustering algorithm with
that of the K-Means++ algorithm as these algorithms share a
similar prototype initialization procedure. On the other hand,
in the second condition, we compare the performances of the
POCS-based clustering, K-Means, and FCM algorithms when
these algorithms are executed independently.

In addition, classification accuracy is also adopted as an
evaluation criterion. Despite the fact that clustering is an
unsupervised learning task, the classes can be retrieved when
the label information of input data is given. To this end, we
determine the class of a cluster as the label that is grouped in
that cluster with the highest probability.

A. Condition 1: Same Initial Prototypes

Table II summarizes the performances of the POCS-based
and K-Means++ algorithms in terms of clustering error, execu-
tion time, and classification accuracy on the Face and MNIST



TABLE II
COMPARISONS OF THE K-MEANS++ AND POCS-BASED CLUSTERING ALGORITHMS IN TERMS OF CLUSTERING ERROR, EXECUTION TIME, AND

CLASSIFICATION ACCURACY.

Algorithm Clustering Error Execution Time (ms) Classification Accuracy

Face MNIST Face MNIST Face MNIST

K-Means++ 111.2±0.3 6,804.6±12.8 4.3±0.6 916.9±301.8 99.36±1.7 64.6±2.2

POCS-based 111.3±0.7 6,836.9±27.6 4.1±0.9 771.2±269.6 99.53±1.5 63.9±1.8

TABLE III
COMPARISONS OF THE K-MEANS, FCM, AND POCS-BASED CLUSTERING ALGORITHMS IN TERMS OF CLUSTERING ERROR, EXECUTION TIME, AND

CLASSIFICATION ACCURACY.

Algorithm Clustering Error Execution Time (ms) Classification Accuracy

Face MNIST Face MNIST Face MNIST

K-Means 110.5±0.2 6,692.4±20.1 3.8±2.1 282.1±30.8 91.7±1.4 60.8±0.5
FCM 111.1±0.1 8,323.0±5.2 45.3±6.2 1,484.9±40.2 93.2±1.2 62.7±5.2

POCS-based 111.2±0.2 6,721.5±15.3 4.5±2.3 615.9±243.7 99.2±2.2 64.5±4.2

embedding sets. As summarized in Table II, the POCS-based
clustering algorithm can work favorably compared with the K-
Means++ algorithm in terms of clustering error even though
the K-Means++ algorithm still shows a slightly better result
on the MNIST embedding set with a minor gap. On the
other hand, in terms of the average convergence speed, the
POCS-based clustering algorithm outperforms the K-Means++
algorithm with a minor gap on the Face embedding set (4.1
ms compared with 4.3 ms, respectively) and a significant gap
on the MNIST feature embedding set (771.2 ms compared
with 916.9 ms, respectively). Additionally, these two clustering
algorithms share similar performances in terms of classifica-
tion accuracy, the POCS-based clustering algorithm slightly
outperforms the K-Means++ algorithm on the Face embedding
set whereas the K-Means++ algorithm marginally surpasses
the POCS-based clustering algorithm on the MNIST feature
embedding set.

Based on these comparisons, we empirically conclude that
the POCS-based clustering algorithm can perform compet-
itively compared with the K-Means++ algorithm in feature
embedding clustering tasks.

B. Condition 2: Different Initial Prototypes

Table III summarizes the performances of the K-Means,
FCM, and POCS-based clustering algorithms in terms of
clustering error, convergence time, and classification accuracy.
As can be seen from Table III, the POCS-based clustering al-
gorithm produces a similar performance in terms of clustering
error compared to those of the K-Means and FCM algorithms
for the Face embedding set, while the FCM algorithm notably
shows higher clustering error for the MNIST embedding set.
Considering the convergence speed, on the Face embedding
set, the POCS-based clustering algorithm obtains the second-
best result with 4.5±2.3 ms, which is 10 times faster than
the FCM algorithm and slightly slower than the K-Means

algorithm. On the embedding set extracted from the MNIST
dataset, the POCS-based algorithm also performs with the
second-best result and still executes much faster than the FCM
algorithm. The main drawback of the POCS-based clustering
algorithm here is the instability of the execution time. That is,
depending on the initial prototypes, the algorithm may con-
verge extremely fast or slow. Note also that when comparing
the K-Means algorithm to the K-Means++ algorithm, the K-
Means algorithm can converge much faster on the MNIST
feature embedding set due to the difference in prototype initial-
ization procedures. That is, the K-Means algorithm randomly
picks the initial prototypes while the K-Means++ algorithm
applies a careful seeding method for prototype initialization,
and the time consumed for the initializing progress highly
depends on the data population. In terms of classification
accuracy, the POCS-based clustering algorithm outperforms
other methods on both the Face and MNIST embedding sets,
while the K-Means and FCM algorithms can produce favorable
results and the FCM algorithm achieves a marginally better
performance than the K-Means approach.

As a result, the POCS-based clustering algorithm gives a
competitive performance when compared with those of the K-
Means and FCM algorithms in feature embedding clustering
problems. It implies that the POCS-based clustering algorithm
has potential in a wide range of clustering tasks.

V. CONCLUSIONS

In this paper, the applicability of the POCS-based clus-
tering algorithm, an effective clustering technique based on
the Projection onto Convex Set (POCS) method, to feature
embedding clustering problems is examined. The POCS-based
clustering algorithm applies the property of the POCS method
to clustering problems and has been proven to be able to
produce competitive performance compared to other prevailing
clustering approaches in terms of clustering error and exe-
cution speed. An off-the-shelf FaceNet model and a plain



autoencoder network are utilized to synthesize two sets of
feature embeddings from the Five Celebrity Faces and MNIST
datasets for experiments and analyses. The evaluation results
on the synthetic embedding datasets show that the POCS-
based clustering algorithm can perform with favorable results
and can be considered a promising approach for various data
clustering problems.

REFERENCES

[1] J. MacQueen, “Classification and analysis of multivariate observations,”
in 5th Berkeley Symp. Math. Statist. Probability. University of
California Los Angeles LA USA, 1967, pp. 281–297. 1

[2] L.-A. Tran, N.-P. Le, T.-D. Do, and M.-H. Le, “A vision-based method
for autonomous landing on a target with a quadcopter,” in 2018 4th
International Conference on Green Technology and Sustainable Devel-
opment (GTSD). IEEE, 2018, pp. 601–606. 1

[3] L.-A. Tran and M.-H. Le, “Robust u-net-based road lane markings
detection for autonomous driving,” in 2019 International Conference
on System Science and Engineering (ICSSE). IEEE, 2019, pp. 62–66.
1

[4] L.-A. Tran, T.-D. Do, D.-C. Park, and M.-H. Le, “Enhancement of
robustness in object detection module for advanced driver assistance
systems,” in 2021 International Conference on System Science and
Engineering (ICSSE). IEEE, 2021, pp. 158–163. 1

[5] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003. 1

[6] J. M. Pena, J. A. Lozano, and P. Larranaga, “An empirical comparison
of four initialization methods for the k-means algorithm,” Pattern
recognition letters, vol. 20, no. 10, pp. 1027–1040, 1999. 1

[7] D.-C. Park, “Centroid neural network for unsupervised competitive
learning,” IEEE Transactions on Neural Networks, vol. 11, no. 2, pp.
520–528, 2000. 1

[8] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means
clustering algorithm,” Computers & geosciences, vol. 10, no. 2-3, pp.
191–203, 1984. 1

[9] D. C. Park and I. Dagher, “Gradient based fuzzy c-means (gbfcm)
algorithm,” in Proceedings of 1994 IEEE International Conference on
Neural Networks (ICNN’94), vol. 3. IEEE, 1994, pp. 1626–1631. 1

[10] L. M. Bregman, “The relaxation method of finding the common point
of convex sets and its application to the solution of problems in convex
programming,” USSR computational mathematics and mathematical
physics, vol. 7, no. 3, pp. 200–217, 1967. 1, 2

[11] R. Y. Albert, R. J. Marks II, K. E. Schubert, C. Baylis, A. Egbert,
A. Goad, and S. Haug, “Dilated pocs: Minimax convex optimization,”
IEEE Access, 2023. 2, 3

[12] L.-A. Tran, H. M. Deberneh, T.-D. Do, T.-D. Nguyen, M.-H. Le, and
D.-C. Park, “Pocs-based clustering algorithm,” in 2022 International
Workshop on Intelligent Systems (IWIS). IEEE, 2022, pp. 1–6. 2, 3

[13] L. Yang, W. Fan, and N. Bouguila, “Clustering analysis via deep
generative models with mixture models,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 1, pp. 340–350, 2020. 2

[14] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 815–
823. 2, 3

[15] “Five celebrity faces dataset,” https://www.kaggle.com/datasets/
dansbecker/5-celebrity-faces-dataset. 2, 3

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998. 2, 3, 4

[17] D. Arthur and S. Vassilvitskii, “K-means++ the advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, 2007, pp. 1027–1035. 3

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985. 3

[19] N. Lv, C. Chen, T. Qiu, and A. K. Sangaiah, “Deep learning and su-
perpixel feature extraction based on contractive autoencoder for change
detection in sar images,” IEEE transactions on industrial informatics,
vol. 14, no. 12, pp. 5530–5538, 2018. 4

[20] A. Majumdar, “Blind denoising autoencoder,” IEEE transactions on
neural networks and learning systems, vol. 30, no. 1, pp. 312–317, 2018.
4

[21] L.-A. Tran, S. Moon, and D.-C. Park, “A novel encoder-decoder network
with guided transmission map for single image dehazing,” Procedia
Computer Science, vol. 204, pp. 682–689, 2022. 4

[22] L.-A. Tran and D.-C. Park, “Encoder–decoder network with guided
transmission map: Robustness and applicability,” in International Sym-
posium on Intelligent Informatics. Springer, 2022, pp. 41–54. 4

[23] D. L. Aguilar, M. A. Medina-Pérez, O. Loyola-Gonzalez, K.-K. R.
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