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Abstract. The robustness and applicability of the Encoder-Decoder
Network with Guided Transmission Map (EDN-GTM) proposed for effi-
cient single image dehazing purpose are examined in this paper. The
EDN-GTM utilizes the transmission map extracted by dark channel
prior approach as an additional input channel of a novel U-Net-based
generative network to achieve an improved dehazing performance. The
EDN-GTM has shown a very favorable performance compared with most
recently proposed dehazing schemes including both traditional and deep
learning-based ones in terms of PSNR and SSIM metrics. To further vali-
date the robustness and applicability of the EDN-GTM scheme, extensive
experiments and quantitative evaluations on various benchmark datasets
are conducted in this paper. In terms of robustness, experimental re-
sults on different benchmark dehazing datasets such as Dense-HAZE,
NH-HAZE, and D-HAZY show that the EDN-GTM scheme consistently
outperforms most modern dehazing approaches on both synthetic and
realistic hazy data regardless of scene locations: indoor or outdoor. On
the other hand, experiments on WAYMO and Foggy Driving datasets
imply that the EDN-GTM can be effectively applied as an image pre-
processing tool to object detection tasks in autonomous driving systems.

Keywords: image dehazing, dark channel prior, spatial pyramid pool-
ing, U-Net, object detection

1 Introduction

Deterioration of the digital image quality negatively affects the performance of
various vision-based tasks including object detection in autonomous driving sys-
tems. Typically, haze can be considered one of the most frequently experienced
natural phenomena causing image visibility degradation. Accurate estimation
of the transmission map in a hazy image, however, has been a major obstacle
in performing haze removal or dehazing [1]. Numerous single image dehazing
approaches have been proposed in attempt to enhance the visibility of hazy im-
ages and some of them have achieved significant progress. Generally, dehazing
algorithms can be categorized into two genres: traditional methods and deep
learning-based methods.



In terms of traditional approaches, Meng et al. [2] have proposed an efficient
dehazing method by enforcing the boundary constraint and contextual regular-
ization for sharper restored images. Zhu et al. [3] have developed a color atten-
uation prior (CAP) that creates a linear model for modeling the scene depth of
hazy image and learns the parameters of the model with a supervised learning
manner. Noticeably, He et al. [4] have proposed the dark channel prior (DCP)
which is developed based on the statistics of haze-free outdoor images to directly
estimate the haze thickness and the dehazed image is derived subsequently using
the haze imaging model.

On the other hand, convolutional neural networks (CNNs) have been gradu-
ally replacing traditional handcrafted graphical models. Cai et al. [5] have intro-
duced DehazeNet which predicts the medium transmission map from hazy image
and haze-free image is restored subsequently based on the atmospheric scatter-
ing model. Ren et al. [6] have proposed a multi-scale CNN (MSCNN) which
consists of a coarse-scale network for predicting a holistic transmission map and
a fine-scale network for refining the result locally. Unlike aforementioned ap-
proaches that consider only the prediction of transmission map, Li et al. [1] have
proposed an all-in-one dehazing network (AOD-Net) which directly learns the
mapping between hazy image and haze-free image. In addition to conventional
CNNs, several studies have adopted generative adversarial networks (GANs) for
image dehazing and have shown promising results. Dong et al. [7] have proposed
a GAN model with fusion-discriminator (FD-GAN) which takes frequency in-
formation as an additional prior and is able to generate more natural-looking
dehazed images with less color distortion.

In order to take advantage of both traditional and deep learning-based ap-
proaches, the Encoder-Decoder Network with Guided Transmission Map (EDN-
GTM) has been proposed in [8] which utilizes the transmission map extracted by
DCP as an additional input channel of a novel U-Net-based generative network
to achieve an improved dehazing performance. To further validate the robust-
ness and applicability of the EDN-GTM scheme to other computer vision tasks,
extensive experiments on various image scenes and different types of hazy data
with the EDN-GTM scheme and some of the most highly accepted image de-
hazying algorithms are conducted and the results with performance comparison
are reported in this paper.

The rest of this paper is organized as follows: Section 2 briefly reviews the
EDN-GTM scheme. A data preparation process for our experiments is presented
in Section 3. In Section 4, extensive experiments on different types of hazy data
in various image scenes with the EDN-GTM and other image dehazing schemes
are conducted and the performance comparison results are summarized. Finally,
Section 5 concludes the paper.

2 The EDN-GTM Scheme

The transmission map in atmospheric scattering model has a very close rela-
tionship with the depth information which benefits many vision applications



Fig. 1. The EDN-GTM scheme.

such as image-based learning models like CNNs [8]. The EDN-GTM utilizes the
transmission map estimated by DCP as an additional input channel for a CNN
model to achieve an improved dehazing performance. In addition, the EDN-
GTM adopts U-Net as the core network because it is widely considered one of
the most powerful encoder-decoder networks applied to image restoration and
segmentation purposes [9]. To further upgrade U-Net for dehazing task, three
main modifications are carried out [8]: 1) a spatial pyramid pooling (SPP) mod-
ule is plugged into the bottleneck to increase the receptive field and separate out
the significant context features [10]; 2) ReLU activation is replaced with Swish
activation because Swish function has been shown to consistently outperform
ReLU function on deep networks [11]; 3) one convolution layer with the size of
3x3 is appended to each of the main convolution stages to increase the receptive
field and capture more high-level features from larger regions in the input im-
age. In terms of optimization function, the EDN-GTM applies an integral loss
function [8] which is a weighted sum of adversarial loss, MSE loss, and percep-
tual loss for the sake of both pixel quality and human perception. The overall
diagram of the EDN-GTM scheme is illustrated in Fig. 1.

3 Data Preparation

3.1 Atmospheric Scattering Model

The atmospheric scattering model used for the description of a hazy image is
expressed as [1]:

I(x) = J(x)t(x) +A(1− t(x)) (1)

where I(x), J(x), A, and t(x) denote the observed intensity, the scene radiance,
the global atmospheric light, and the transmission map, respectively. When the
atmospheric light is homogenous, t(x) can be expressed as [1]:

t(x) = e−βd(x) (2)



Fig. 2. Synthesized hazy images from WAYMO dataset: (a) Clean images, (b) Synthe-
sized hazy images by the proposed method, and (c) Synthesized hazy images based on
random transmission map.

where β represents the scattering coefficient of the atmosphere, and d(x) is the
scene depth.

3.2 Synthesizing Hazy Data for Driving Object Detection

In order to obtain synthetic hazy data to be used as training dataset, one of
the simplest methods is applying random transmission maps to (1) to generate
synthetic hazy images [5] [6]. However, this method may not be valid in some
cases where the images contain complex scenes or dark scenes, this incident
can lead to creating unreliable training image samples [20]. Apart from that
simple method, we propose a novel procedure that applies (2) to estimate the
transmission map instead of randomizing it in attempt to obtain a more accurate
transmission map, thereby resulting in obtaining more natural-looking synthetic
hazy images.

Specifically, a pre-trained Monodepth2 model [12] which was trained on driv-
ing image data is applied to estimate the scene depth. When the scene depth
is derived, (2) and (1) are sequentially applied to generate transmission map
and synthetic hazy image. In order to avoid generating only a certain amount of
haze in all images, the value of β in (2) is set to be a randomly chosen number
between 1.0 to 3.0. This selection method of β can generate different degrees
of haze in the synthesized image data and can enhance the diversity of training
data. Fig. 2 shows an illustration of several synthesized hazy data from WAYMO
dataset [13] by adopting the proposed method. As can be seen from Fig. 2, we
can obtain more natural-looking hazy images by applying the proposed method
than those of the method based on random transmission maps.



Fig. 3. Visual dehazing results on high-resolution realistic hazy datasets: (a) Input,
(b) DCP [4], (c) CAP [3], (d) Meng et al. [2], (e) AOD-Net [1], (f) EDN-GTM, and
(g) Ground Truth (from top to bottom, representative validation data of I-HAZE, O-
HAZE, Dense-HAZE, and NH-HAZE datasets, respectively).

3.3 Datasets

Dehazing Datasets To validate of the robustness of the EDN-GTM scheme,
five benchmark datasets with different types of haze data in indoor and outdoor
scenes are utilized to conduct experiments:

– I-HAZE and O-HAZE [14]: These datasets contain 25 and 35 pairs of corre-
sponding hazy and haze-free images of indoor and outdoor scenes for train-
ing, respectively, and both contain 5 image pairs for validation. The images
are provided in high resolution and have an average size of approximately
2,800x4,600 pixels.

– Dense-HAZE [15]: This dataset is known as one of the most challenging
datasets in dehazing tasks with image data containing dense and heavy haze.
The dataset contains 45 pairs of hazy and haze-free images for training and
5 image pairs for validation. The image size is 1,200×1,600 pixels.

– NH-HAZE [15]: This dataset provides non-homogeneous hazy image data
and contains 45 hazy and haze-free image pairs with 40 image pairs for
training and the remaining 5 image pairs for validation. The image size in
this dataset is 1,200×1,600 pixels.

– D-HAZY [16]: This is a benchmark synthetic dehazing dataset with 1,449
pairs of clean and synthetic hazy images of indoor scenes.



Table 1. Quantitative dehazing results on I-HAZE and O-HAZE datasets.

I-HAZE O-HAZE

Method PSNR SSIM PSNR SSIM

DCP (TPAMI’10) [4] 14.43 0.7516 16.78 0.6532
CAP (TIP’15) [3] 12.24 0.6065 16.08 0.5965
MSCNN (ECCV’16) [6] 15.22 0.7545 17.56 0.6495
AOD-Net (ICCV’17) [1] 13.98 0.7323 15.03 0.5385
PPD-Net (CVPRW’18) [14] 22.53 0.8705 24.24 0.7205

EDN-GTM 22.90 0.8270 23.46 0.8198

Table 2. Quantitative dehazing results on Dense-HAZE and NH-HAZE datasets.

Dense-HAZE NH-HAZE

Method PSNR SSIM PSNR SSIM

DCP (TPAMI’10) [4] 10.06 0.3856 10.57 0.5196
DehazeNet (TIP’16) [5] 13.84 0.4252 16.62 0.5238
AOD-Net (ICCV’17) [1] 13.14 0.4144 15.40 0.5693
MSBDN (CVPR’20) [18] 15.37 0.4858 19.23 0.7056
AECR-Net (CVPR’21) [15] 15.80 0.4660 19.88 0.7173

EDN-GTM 15.43 0.5200 20.24 0.7178

Object Detection Datasets In order to prove the applicability of the EDN-
GTM scheme to object detection module in autonomous driving systems [21],
two benchmark datasets are chosen to examine in our experiments:

– WAYMO [13]: This dataset provides a benchmark for 2D object detection
tasks in driving scenarios with approximately 100K images. However, only
1,100 images are utilized to conduct dehazing and object detection experi-
ments. Specifically, 1,000 and 100 front-view images for training and valida-
tion, respectively.

– Foggy Driving [17]: The dataset consists of natural foggy driving scenes
which is a benchmark for evaluating object detection performance on real-
world foggy scenes. Because this dataset does not provide pairs of foggy-clean
images for supervised training, we apply directly the pre-trained weights of
the EDN-GTM which is trained on the synthesized hazy images of WAYMO
dataset to perform haze removal on Foggy Driving dataset.

4 Results on Benchmark Datasets and Applications to
Driving Object Detection Tasks

This section provides the performances of the EDN-GTM scheme on different
types of hazy data in various image scenes. The dehazing performance is mea-



Fig. 4. Visual dehazing results of the EDN-GTM on synthetic hazy dataset D-HAZY
(top: hazy images, middle: dehazed images, bottom: ground truth images).

Table 3. Quantitative dehazing results on D-HAZY dataset.

Method PSNR SSIM Time (sec.)

DCP (TPAMI’10) [4] 14.4794 0.8280 0.17
CAP (TIP’15) [3] 14.7497 0.8145 0.20
DehazeNet (TIP’16) [5] 14.7265 0.8199 0.09
MSCNN (ECCV’16) [6] 13.6193 0.7865 0.14
C2MSNet (WACV’18) [19] 16.5808 0.8480 0.072

EDN-GTM 24.0366 0.8914 0.085

sured by using peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM) metrics. The PSNR, however, is chosen as our primary perfor-
mance measure because we consider the quality of pixel restoration to be the
utmost factor so that the scheme can benefit other computer vision tasks such
as object detection.

4.1 Dehazing Results on Realistic Haze Datasets

The performances of the EDN-GTM scheme on I-HAZE and O-HAZE datasets
are first compared with those of other approaches in Table 1. As shown in Table
1, on I-HAZE dataset, the EDN-GTM scheme achieves the best dehazing perfor-
mance in terms of PSNR (22.90 dB) while showing the second-best performance
in terms of SSIM (0.8270). On O-HAZE dataset, the EDN-GTM scheme gives
the second-best performance in terms of PNSR (23.46 dB) while showing the
best performance in terms of SSIM (0.8198). More quantitative dehazing results



Fig. 5. Visual dehazing results on synthesized hazy data (in each pair, the left image
denotes the hazy image and the right image presents the dehazed image).

on I-HAZE and O-HAZE datasets are summarized in Table 1, where the best
and the second-best results are shown in red and blue colors, respectively.

Experiments on Dense-HAZE and NH-HAZE datasets are then performed.
Note that Dense-HAZE and NH-HAZE datasets are more challenging than I-
HAZE and O-HAZE datasets. The performances of the EDN-GTM scheme are
also compared with those of other approaches and summarized in Table 2, where
the best and the second-best results are shown in red and blue colors, respec-
tively. On Dense-HAZE dataset, the EDN-GTM scheme gives the second-best
performance in terms of PNSR (15.43 dB) while showing the best performance
in terms of SSIM (0.5200). On NH-HAZE dataset, the EDN-GTM scheme con-
vincingly achieves the best dehazing performance in both PSNR (20.24 dB) and
SSIM (0.7178).

Typical visual dehazing results of the EDN-GTM scheme and other meth-
ods on four benchmark realistic dehazing datasets including I-HAZE, O-HAZE,
Dense-HAZE and NH-HAZE datasets are shown in Fig. 3. As can be seen from
Fig. 3, the EDN-GTM can produce more visually compelling dehazed images
compared to those of other modern haze removal algorithms.

As the qualitative and quantitative evaluations shown in Fig. 3, Table 1 and
Table 2, the EDN-GTM scheme achieves very favorable results on all the datasets
in our experiments when compared with other recent dehazing methods. The
qualitative and quantitative results demonstrate that the EDN-GTM scheme
has a well-designed architecture that can perform efficiently on haze removal
tasks. In addition, we notice that transmission map plays a very important role
in guiding the EDN-GTM scheme to produce excellent results in image dehazing
tasks.

4.2 Dehazing Results on Synthetic Hazy Dataset

Further experiments on benchmark synthetic dataset, D-HAZY [16], are also
carried out to prove the robustness of the EDN-GTM scheme on synthetic hazy
image data. In our experiment, D-HAZY dataset is first splitted into training



Fig. 6. Application of the EDN-GTM scheme to object detection on WAYMO dataset.
In each pair, the left image denotes the hazy image and the right image presents the
dehazed image (red box: ground truth, green box: detection).

Table 4. Improvement of the detection accuracy on synthesized hazy WAYMO Dataset
using EDN-GTM.

Hazy Images Dehazed Images

mAP 41.91% 46.64%

set (807 images) and validation set (642 images) because D-HAZY dataset does
not divide its data for training and testing beforehand [19]. We also consider the
inference time of the EDN-GTM in comparison with that of other dehazing meth-
ods to investigate the execution speed of the EDN-GTM. As indicated in Table
3 where the best results are indicated in red numbers and blue numbers demon-
strate the second-best results, the EDN-GTM achieves the best performance in
both PSNR and SSIM while its inference time is still competitive against other
approaches with the second-best result, 0.085 seconds per image. Fig. 4 shows
several visual dehazing results of the EDN-GTM scheme on D-HAZY dataset,
where the top, the middle, and the bottom images denote the input hazy, the
dehazed, and the ground truth images, respectively.

4.3 Object Detection Results on Synthetic Hazy Driving Scenes

In order to evaluate the applicability of the EDN-GTM scheme to driving object
detection problems, the scheme is utilized as a pre-processing tool of hazy im-
ages. Visual dehazing results on synthesized WAYMO hazy dataset are indicated



Fig. 7. Visual dehazing results on natural foggy images in Foggy Driving dataset pro-
duced by the EDN-GTM scheme (in each pair, the left image denotes the hazy image
and the right image presents the dehazed image).

Table 5. Improvement of the detection accuracy on Foggy Driving Dataset using
EDN-GTM.

Hazy Image Set Dehazed Image Set

mAP 77.88% 79.08%

in Fig. 5. After haze removal is performed on the input images by adopting the
EDN-GTM scheme, a pre-trained YOLOv4 object detection model [10] which
was trained on the original WAYMO dataset is utilized to evaluate object de-
tection performances on hazy and dehazed images. The experimental results are
summarized in Table 4. As shown in Table 4, the EDN-GTM scheme helps to in-
crease the mean average precision (mAP) by 4.73% which is 11.3% improvement
over the system without the pre-processing step performed by the EDN-GTM
scheme. Fig. 6 shows visual detection results on hazy and dehazed images, where
the red and green boxes indicate the ground truth objects and the detected ob-
jects, respectively. As can be seen from Fig. 6, the dehazed images obtained
through the EDN-GTM scheme can provide much improved detection results
than what the original hazy images can provide.

4.4 Object Detection Results on Natural Hazy Driving Scenes

In order to investigate the robustness and applicability of the EDN-GTM scheme
to object detection in natural foggy driving scenes, the performance of the EDN-
GTM scheme on Foggy Driving dataset [17] is also examined. The pre-trained



Fig. 8. Application of the EDN-GTM scheme to object detection on Foggy Driving
dataset. In each pair, the left image denotes the hazy image and the right image
presents the dehazed image (red box: ground truth, green box: detection).

EDN-GTM model which was trained on synthesized WAYMO hazy data is first
utilized to perform dehazing on Foggy Driving dataset. As can be seen from
Fig. 7 for the visual dehazing results, the EDN-GTM scheme can remove the
haze significantly and the restored scenes are much cleaner that endow great
support to the vision of the driver or the camera of autonomous driving systems.
The experimental results may consolidate that the EDN-GTM scheme can be
considered a robust tool for natural haze removal. The results shown in Fig.
7 imply that the EDN-GTM scheme can help even human drivers under foggy
weather conditions. Note that the model used in this experiment was trained
on synthesized hazy WAYMO dataset but was tested on natural hazy Foggy
Driving dataset. Hence, this result also demonstrates that the strategy of using
synthesized hazy data for training the EDN-GTM scheme when natural foggy



images are limited is very excellent and has high potential. In addition, the
proposed method for synthesizing hazy data is very promising.

The experimental results of object detection performance using the EDN-
GTM scheme on Foggy Driving dataset are summarized in Table 5. A pre-trained
YOLOv4 model is utilized to evaluate object detection performances on original
and dehazed images. The quantitative results shown in Table 5 demonstrate that
the EDN-GTM scheme can help to improve the accuracy of object detection
from 77.88% to 79.08% in mAP. Typical visual results of object detection can
be seen in Fig. 8. The results in Fig. 8 show that the EDN-GTM scheme has
a potential to help the object detection tasks in obtaining better localization
results, reducing false positives, and improving detection accuracy on distant
and small objects. As a result, the EDN-GTM scheme can be considered an
efficient image enhancement tool for foggy images.

5 Conclusions

In this paper, the robustness and applicability of the Encoder-Decoder Network
with Guided Transmission Map (EDN-GTM) proposed for effective single im-
age dehazing are presented. The EDN-GTM combines the transmission map
extracted by dark channel prior algorithm with an upgraded architecture of
U-Net developed for dehazing task in order to achieve an improved dehazing
performance. To validate the robustness of the EDN-GTM scheme, extensive
experiments on various image scenes and different types of hazy data are con-
ducted and the results have shown that the EDN-GTM scheme consistently
outperforms most recent dehazing methods in terms of PSNR and SSIM met-
rics. In addition, the applicability of the EDN-GTM scheme is verified when it
is utilized as an image pre-processing tool for object detection tasks. The exper-
imental results show that the EDN-GTM scheme can improve object detection
accuracy by 4.7% and 1.2% in mAP on WAYMO and Foggy Driving datasets,
respectively. From these results, we can conclude that the EDN-GTM scheme
has promising potential to be an image pre-processing tool for practical driving
object detection problems.
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