

I

Abstract – This project presents an object-detection-based

surveillance system applying YOLOv3 engine and streaming

the detection result on a web browser with 2 cameras (2

channels), simultaneously the detection information is stored in

a database. The application consists of three main components:

(1) YOLOv3 object detection module, (2) a database for storing

detection results including images and information, and (3) a

web template for observation and querying data from the

database. This application applied Django, an open-source and

flexible web framework written in Python, for communicating

between the object detection module, the database, and the web

browser. The experimental results proved that the application

can work stably and can be applied to surveillance system at

companies, factories, or public locations such as bus station or

airport.

Keywords – object detection, streaming, django, database

management, web framework.

I. INTRODUCTION

Surveillance systems are systems used for the purpose of

observing an area. They usually consist of cameras

connected to a recording device or local server and may be

watched by a security officer. In the last decades, cameras

and recording equipment used to be relatively expensive and

required human personnel to monitor camera footage, but

nowadays analysis of footage has been made easier by

automated software. The captured frames can be stored and

organized in a searchable database. Besides, along with the

development of artificial intelligence (AI) techniques, most

useful and basic information in the footage is also stored in

the database with the respective frame. Due to the

affordability, surveillance cameras currently are inexpensive

and applicable to security systems in houses, companies, and

factories [1] or autonomous driver-assistance systems [5].

Our system is an object-detection-based surveillance web

application (applied YOLOv3 engine [2]) that streams the

detection result on a web browser with 2 cameras (2

channels), simultaneously the detection information is stored

in a database. The application was built using Django

framework [3] and allows the user to be able to observe the

detection outcome, searching functionality help the user

filter and query data in the database based on the fields of

date time, camera id, and object classes.

This report is organized as follows. Section 2 firstly

describes the workflow of the system, then dives deeply into

introducing each module of the system including object

detection engine, Django framework, and database

management. Section 3 discusses the result of the project.

Finally, the conclusions of the project are presented in

section 4.

II. THE SYSTEM

A. System Overview

Image frame is captured by cameras then is passed

through an object detection module to yield the detection.

On the one hand, the object detection result is stored in a

database including the frame and its respective detected

object information (date time, camera id, object class,

bounding box coordinate), on the other hand, the image with

bounding boxes are drawn on is displayed on the web

template. The web application has also a searching

functionality for filtering the data by date time, camera id,

and object classes. Figure 1 depicts the diagram of the

application.

Figure 1. Application Diagram.

B. Object Detection Engine

In recent years, the rapid development of deep learning

has drawn more attention to object detection issue.

Nowadays, many object detection algorithms have been

deployed in a variety of forms and have been applied in

various applications. In the project, the use of object

detection for surveillance application is discussed.

Object detection in images means not only identify what

kind of object is included but also localize it inside the

image (obtain the coordinates of the “bounding box”

containing the object). The most state-of-the-art object

detection algorithms are SSD, R-FCN, RetinaNet, and

YOLO. As figure 2, showing YOLOv3 performance

Le-Anh Tran

leanhtran@mju.ac.kr
Myongji University, South Korea

Object Detection Streaming and Data Management on Web Browsers

Object

Detection
Django

Database

Web

Browser
Camera

Figure 3. YOLO v3 network architecture (Image source: Ayoosh Kathuria - https://towardsdatascience.com/@ayoosh).

compared to other object detection algorithms, YOLOv3 has

the fastest processing time while its Mean Average Precision

(mAP) is also favorable, so it was carried out to be deployed

in the application. Figure 3 illustrates YOLOv3 network

architecture [2].

Figure 2. Object Detection Algorithms Performance [2].

For feature extraction, YOLOv3 uses a new network,

Darknet-53, which is much more powerful than Darknet-19

but still more efficient than ResNet-101 or ResNet-152 and

with 80 class predictions [2].

C. Django Framework

Django is a free and open-source web framework, written

in Python, which follows the model–view–controller (MVC)

architectural pattern [3].

• URL: A URL mapper is used to redirect HTTP requests

to the appropriate view based on the request URL. The URL

mapper can also match particular patterns of strings or digits

that appear in an URL, and pass these to a view function as

data.

• Model: A model is the single, definitive source of

information about your data. It contains the essential fields

and behaviors of the data you stored. Generally, each model

maps to a single database table.

a) Each model is a Python class that subclasses

django.db.models.Model.

b) Each attribute of the model represents a database field.

c) With all of this, Django gives an automatically

generated database-access API.

• View: A view function, or view for short, is simply a

Python function that takes a Web request and returns a Web

response. This response can be the HTML contents of a Web

page, or a redirect, or a 404 error, or an XML document, or

an image, etc.

• Template: Being a web framework, Django needs a

convenient way to generate HTML dynamically. The most

common approach relies on templates. A template contains

the static parts of the desired HTML output as well as some

special syntax describing how dynamic content will be

inserted.

Simple Django’s workflow description: Request from the

web page is detected by paths in urls.py, urls.py tries to

match the paths with appropriate functions in views.py,

https://towardsdatascience.com/@ayoosh

views.py processes the request and reads/writes data in the

database if needed via models.py, then calls a template and

responses to the web page. The workflow is summarized in

figure 4.

Figure 4. Django’s Workflow.

D. Database Management

MySql is an open-source database management system

that operates on a client-server model and is used to create

and manage databases in the form of managing the

relationship between them [4]. Even if it was initially

limited, it is now compatible with many operating systems

such as Linux, macOS, Microsoft Windows, and Ubuntu.

Description of the tables in the MySql database: In the

project, we created 2 tables: webcam_infor_storage and

webcam_image_storage for storing the object detection

information and image frame data, respectively.

a) Table 1: webcam_infor_storage

This table contains a list of the object detection

information including date time, camera id, detected object

class, and bounding box coordinate. This table has 8 fields:

id: frame id (INT)

date_time: the date time of the captured frame

(DATETIME)

cam_id: each camera has a particular id (INT)

object_class: name of the detected object (VARCHAR)

x, y, w, h: the left-top corner coordinate of the bounding

box (x, y) and its width, height (w, h) (INT)

b) Table 2: webcam_image_storage

This table stores image data as blob data and basic

information of the frame including date time, and camera id.

This table has 4 fields:

id: frame id (INT)

date_time: the date time of the captured frame

(DATETIME)

cam_id: each camera has a particular id (INT)

image: stored image as blob data (BLOB)

Table 1. The table webcam_infor_storage in mysql

database.

id date_time cam_id object_class x y w h

1 2019-07-01

12:00:00.123456
0 person 100 100 150 250

2 2019-07-01

12:00:01.456789
1 cell phone 200 200 50 100

… … … … … … … …

Table 2. The table webcam_image_storage in mysql

database.

id date_time cam_id image

1 2019-07-01 12:00:00.123456 0 <blob data>

2 2019-07-01 12:00:01.456789 1 <blob data>

… … … …

III. EXPERIMENTAL RESULTS

The system was built and run in Ubuntu 18.04, including

2 cameras for 2 channels, one is the laptop built-in camera

and the other one is Logitech USB camera, captured image

is resized to the resolution of 1024x768 pixels. The web

template has 4 main tabs, tab Home is the home page of the

application in which the object detection outcome of camera

1 is set to default to display, thus tab Camera 1 and tab

Home have almost the same contents, tab Camera 2 is for

displaying the object detection outcome from camera 2, tab

Database is the most important part, which displays data

and helps user query data from the database, it has 2 main

buttons, Display 50 latest data refreshes and displays the 50

newest data from the database, Filter returns a dashboard for

filtering and querying data from the database by date time,

camera id, and object classes.

The following pictures illustrate those main parts of the

application: figure 5 shows the web template for displaying

object detection outcome of camera 1, figure 6 depicts the

table webcam_infor_storage in the database, figure 7

indicates that the data is queried from the database then is

displayed on a web browser, and figure 8 illustrates the

searching functionality for filtering data by date time,

camera id, and object classes.

URLS

(urls.py)

VIEW

(views.py)

TEMPLATE

<files>.html

MODEL

(models.py)

HTTP

Request

HTTP
Response
(HTML)

Figure 5. Observation on web template (page of camera 1).

Figure 6. Table webcam_infor_storage in the database.

Figure 7. Querying data from database and display it on web template.

Figure 8. Searching functionality.

IV. USAGE

A. Prerequisites

The system has been run locally. Besides, some packages

and installations are required, below are some essential

requirements:

- Ubuntu 18.04

- Virtual environment

- Python 3.5

- Django 2.2

- MySQL 5.6

B. Important Folders and Files

The project was built and run in virtual environment with

necessary packages, in which, some important folders and

files are noted as below:

- manage.py: main of the project

- statics/css: web template written in css

- statics/images: images for web template

- stream/settings.py: settings for database connection,

linking to static files, etc.

- stream/urls.py: forward request to functions in views.py

- webcam/views.py: main controller/processor

- webcam/models.py: configure connection to database

- webcam/templates: html files for web display

C. Usage

Create a virtual environment (named my_env), the main

purpose of virtual environments is to create an isolated

environment for Python projects:

python3 -m venv my_env

Activate virtual environment by running the command:

source my_env/bin/activate

Navigate terminal to the project, run the command:

python3 mamage.py runserver

Open any web browser and navigate to the URL:

http://127.0.0.1:8000/index/

Note: Running the project in the first time on a new

computer may yield error caused by missing packages or

incorrect version of packages, if so, install or update those

packages then run the project again.

V. CONCLUSIONS

This report mainly introduces the process and structure of

an object-detection-based surveillance web application

(applied YOLOv3 engine) that streams the detection result

on a web browser with 2 cameras (2 channels),

simultaneously the detection information is stored in a

database. In terms of web design, this application applied the

Django, which is an open-source, flexible web framework,

written in Python. In terms of database management, the

data is stored and managed in MySql database, an open-

source relational database management system. We establish

communication between the object detection module and the

database, on the web browser, users can query and filter data

from the database by using a searching functionality, which

can be used to filter data by date time, camera id, and object

classes.

The application now can operate stably and is being

improved to be more flexible and optimized. Hopefully, the

application can be applied to surveillance system at

companies, factories, or public locations such as bus station

or airport.

REFERENCES

[1] Kinjal A Joshi, and Darshak G. Thakore, “A Survey on Moving

Object Detection and Tracking in Video Surveillance System,”

International Journal of Soft Computing and Engineering (IJSCE),

Volume-2, Issue-3, July 2012, pp. 44-48.

[2] Joseph Redmon, and Ali Farhadi, “Yolov3: An incremental

improvement,” CoRR, vol. abs/1804.02767, 2018.

[3] Chuanhong Zho, and Qi Fei, “Warehouse Management System

Development Base on Open-source Web Framework,” in 2016

International Conference on Industrial Informatics - Computing

Technology, Intelligent Technology, Industrial Information

Integration (ICIICII 2016), Wuhan, China, Dec. 3-4, 2016, pp. 65-68.

[4] Jitesh Shetty, and Jafar Adibi, “The Enron Email Dataset Database

Schema and Brief Statistical Report”, Los Angeles, CA, 2004.

[5] Le-Anh Tran, and My-Ha Le, “Robust U-Net-based Road Lane

Markings Detection for Autonomous Driving,” International

Conference on System Science and Engineering (ICSSE 2019), 62-66.

doi:10.1109/ICSSE.2019.8823532.

http://127.0.0.1:8000/index/

