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Abstract

A novel Encoder-Decoder Network with Guided Transmission Map (EDN-GTM) for single image dehazing scheme is proposed
in this paper. The proposed EDN-GTM takes conventional RGB hazy image in conjunction with its transmission map estimated
by adopting dark channel prior as the inputs of the network. The proposed EDN-GTM utilizes U-Net for image segmentation
as the core network and utilizes various modifications including spatial pyramid pooling module and Swish activation to achieve
state-of-the-art dehazing performance. Experiments on benchmark datasets show that the proposed EDN-GTM outperforms most
of traditional and deep learning-based image dehazing schemes in terms of PSNR and SSIM metrics. The proposed EDN-GTM
furthermore proves its applicability to object detection problems. Specifically, when applied to an image preprocessing tool for
driving object detection, the proposed EDN-GTM can efficiently remove haze and significantly improve detection accuracy by
4.73% in terms of mAP measure.
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1. Introduction

The deterioration of digital image quality results in severe degradation of visibility and it affects the performance
of various vision-based tasks. For instance, a self-driving system or even a human driver can be deprived of vision
when facing inclement weather conditions which can result in unfortunate accidents and fatalities. Hence, visibility
enhancement is an extremely critical task in real-world applications. Generally, haze can be considered as one of
the most important phenomena causing image visibility degradation. As a challenging problem in computer vision,
however, accurate estimation of the transmission map in a hazy image has been a major obstacle in haze removal or de-
hazing task [1]. Numerous single image dehazing approaches have been proposed in attempt to enhance the visibility
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Fig. 1. Results of DCP on I-HAZE Dataset: (a) Input image, (b) Dehazed image, (c) Ground truth, (d) Inverse transmission map.

of hazy images and some of them have achieved significant progress. Typically, haze removal algorithms can be cate-
gorized into two paradigms: traditional methods and deep learning-based methods. In terms of traditional approaches,
Meng et al. [2] have proposed an efficient dehazing method by enforcing the boundary constraint and contextual reg-
ularization for sharper restored images. Zhu et al. [3] have developed a color attenuation prior (CAP) that creates a
linear model for modeling the scene depth of hazy image and learns the parameters of the model with a supervised
learning manner. Noticeably, He et al. [4] have proposed the dark channel prior (DCP) which is developed based on
the statistics of haze-free outdoor images. The DCP is combined with the haze imaging model to directly estimate the
haze thickness and the haze-free image is recovered subsequently. On the other hand, convolutional neural networks
(CNNs) have brought an explosive rise in performance across a great number of image-based learning tasks. More
recently, haze removal approaches such as AOD-Net [1], DehazeNet [5], MSCNN [6], and PPD-Net [7] have also
universally adopted CNNs as the principal component in their schemes. These CNN-based approaches have recently
produced dramatic improvement in performance on benchmark datasets and have been gradually replacing traditional
handcrafted graphical models. However, there still exists a room for improvement in CNN-based approaches. More
detailed discussions of CNN-based haze removal approaches are presented in Section 2.2. In order to take advantage
of both traditional and deep learning-based methods for achieving more improved haze removal performance, a novel
encoder-decoder network is proposed in this paper. The proposed scheme, called Encoder-Decoder Network with
Guided Transmission Map (EDN-GTM), utilizes the transmission map extracted by using DCP as additional input to
the network in order to achieve an improved performance.

The remainder of this paper is organized as follows: Section 2 provides the preliminaries of research on single
image dehazing. Next, the EDN-GTM scheme is proposed in Section 3. Experiments on benchmark data sets along
with the analysis are presented in Section 4. Section 5 concludes the paper.

2. Preliminaries

2.1. Atmospheric Scattering Model

The atmospheric scattering model used for the description of a hazy image is expressed as [1][4]:

I(x) = J(x)t(x) + A(1 − t(x)) (1)

where I(x), J(x), A, and t(x) denote the observed intensity, the scene radiance, the global atmospheric light, and the
transmission map, respectively. When the atmospheric light is homogenous, t(x) can be expressed as [1][4]:

t(x) = e−βd(x) (2)

where β represents the scattering coefficient of the atmosphere and d(x) is the scene depth.

2.2. Dehazing using Convolutional Neural Networks

Cai et al. [5] have introduced DehazeNet which predicts the medium transmission map from hazy image and
haze-free image is restored subsequently based on the atmospheric scattering model. However, DehazeNet performs
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Fig. 2. Network architectures: (a) Design of the proposed scheme, (b) Architecture of EDN-GTM, and (c) Architecture of Discriminator.

dehazing on image-patch level. As a result, DehazeNet does not fully utilize high-level information from a large region
of input [8]. Ren et al. [6] have proposed a multi-scale CNN (MSCNN) which consists of a coarse-scale network for
predicting a holistic transmission map and a fine-scale network for refining the result locally. However, MSCNN shows
somewhat less effective performance in dark scenes [6]. Different from aforementioned approaches that consider only
the prediction of transmission map, Li et al. [1] have proposed an all-in-one dehazing network (AOD-Net) which
directly learns the mapping between hazy image and haze-free image. Despite the advantage in computational cost,
AOD-Net does not explore the information of transmission map independently. Therefore, the restored images by
AOD-Net still contain some haze residues [8]. Qin et al. [9] have proposed a feature fusion attention network (FFA-
Net) which applies attention mechanisms to directly restore haze-free image. FFA-Net adopts L1 reconstruction loss
to train the network. However, using L1 loss or L2 loss on raw pixels as sole optimization may produce blurry restored
image [10]. In addition to conventional CNNs, several studies have adopted generative adversarial networks (GANs)
for image dehazing and have shown promising results. Qu et al. [11] proposed Enhanced Pix2pix Dehazing Network
(EPDN) which is comprised of two main components: a GAN model to generate pseudo realistic image on a coarse
scale followed by an enhancer to refine the pseudo realistic image and produce fine-scale dehazed image. Dong et
al. [12] also proposed a GAN model with fusion-discriminator (FD-GAN) which takes frequency information as
additional priors and is able to generate more natural-looking dehazed images with less color distortion.

3. Methodology

3.1. Transmission Map as Additional Input Channel for CNNs

Fig. 1 shows typical visual dehazing results of DCP on I-HAZE dataset [7] which contains indoor-scene image data.
The results indicate that when the image data involves indoor scenes, the outputs of DCP are not visually compelling
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and considerably suffer from color distortion. It can be explained by two reasons: first, DCP is based on the statistics
of haze-free outdoor images while I-HAZE dataset contains indoor-scene images; second, DCP can be invalid when
scene object is identical to the air light over a large local region while the input images include the wall scenes that
appear similar with the air light in outdoor scenes. However, when we revisit the inverse transmission maps which are
shown in Fig. 1 (d), we have found that they are still able to precisely represent the haze thickness in the scenes even
though the image data involves indoor scenes while DCP is probably confused in the areas of the wall scenes. On the
other hand, CNNs can have a potential to deal with the similarity between the haze regions and the wall scenes because
CNNs have the capability of extracting and analyzing advanced features of objects in image. In addition, as described
in Eq. (2), the transmission map has a very close relationship with the depth information which benefits many vision
applications such as image-based learning models like CNNs. Therefore, it is convinced that the transmission map
estimated by using DCP can be utilized as guidance for a CNN model to achieve an improved dehazing performance.

3.2. Network Design

Inspired by the success of EPDN [11] and FD-GAN [12], GAN framework is applied to the proposed dehazing
scheme. The proposed scheme and network architectures are illustrated in Fig. 2. In the generative network design, U-
Net [13] has been chosen as the core network because it is one of the most powerful encoder-decoder networks applied
to image restoration. U-Net is comprised of two paths; a contraction path (encoder) for extracting and analyzing
advanced features and an expansion path (decoder) for feature synthesis. For further upgrading the U-Net for dehazing
task, three main modifications are applied: 1) a spatial pyramid pooling (SPP) module is plugged into the bottleneck
to increase the receptive field and separate out the significant context features [14]; 2) ReLU activation is replaced
with Swish activation because Swish function has been shown to consistently outperform ReLU function on deep
networks [15]; 3) one convolution layer with the size of 3x3 is added before each of the down-scaling step and the
up-scaling step to increase the receptive field and capture more high-level features from larger regions in the input
image. In terms of the discriminator design, the encoder of U-Net is adopted in order to encourage the discriminator
to have the same capability of extracting and analyzing advanced features with the generator so that the two networks
compete each other to boost their performances.

3.3. Loss Function

For the sake of both pixel quality and human perception, a combination of adversarial loss, MSE loss and perceptual
loss [10] is adopted in the proposed scheme. The adversarial loss is implemented as in [10] because it has achieved
notable success in image restoration problem. The adversarial loss Ladv is defined as:

Ladv =
1
B

B∑
i=1

−D(G(z)) (3)

where B, D(x), G(x), and z denote the number of samples in a mini-batch, output of the discriminator, the generated
image, and the hazy input image, respectively. The MSE loss is written as:

LMS E =
1
N

N∑
i=1

(Gi(z) − Ii)2 (4)

where N is the number of pixels in the generated image and I is the ground-truth image. The perceptual loss [10] to
measure the perceptual similarity in feature space is defined as:

Lper =
1
M

M∑
i=1

(ϕi(G(z)) − ϕi(I))2 (5)

where M is the number of elements in the feature map ϕ at layer Conv3−3 of the VGG16 model [10], and ϕi represents
the ith activated value of ϕ.

By combining all the related loss functions, the integral loss function LI for optimizing the generator can be
formulated as:

LI = ω1Ladv + ω2LMS E + ω3Lper (6)
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Fig. 3. Visual dehazing results on high-resolution imagery datasets: (a) I-HAZE, (b) O-HAZE, (c) Dense-HAZE, and (d) NH-HAZE.

and the critic loss function LD for training the discriminator is defined as [10]:

LD = ω4
1
B

B∑
i=1

(D(I) − D(G(z))) (7)

For our present scheme, the weight values for the integral loss function and the critic loss function are set as ω1 =

100, ω2 = 100, ω3 = 100, and ω4 = 1.

4. Experiments

4.1. Datasets and Data Preparation

Four benchmark datasets, I-HAZE, O-HAZE, Dense-HAZE, and NH-HAZE [7][19], are used for experiments on
dehazing tasks, while WAYMO dataset [16] which contains approximately 100K driving images is used for experi-
ments on object detection tasks, however, we consider utilizing only 1,100 WAYMO images to conduct experiments.
Data augmentation is carried out to improve the learning capability of the network: first, for every training image, a
random crop method is adopted by cropping 5 image patches which have the same width/height ratio with the original
image. Subsequently, a horizontal flipping method is also adopted to double the number of training samples and con-
currently create new geometry variations of the training image textures. To synthesize hazy data for WAYMO dataset,
a pre-trained Monodepth2 model [17], which was trained on driving scenario data to estimate the depth maps of image
data in WAYMO dataset, is utilized. After obtaining the depth maps, Eq. (2) and Eq. (1) are then applied sequentially
to generate transmission maps and synthesized hazy images. In order to avoid generating only a certain amount of
haze in all images, the value of β is set to be a randomly chosen number between 1.0 to 3.0. This selection method of
β can generate different degrees of haze in the synthesized image data and make the training data more diverse.

4.2. Experimental Settings

The experiments were performed on GeForce GTX TITAN X Graphics Cards. The network input size is 512x512.
The number of training epochs is 400. In the first 200 epochs, the learning rate is fixed to 10-4 and in the final 200
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image. Subsequently, a horizontal flipping method is also adopted to double the number of training samples and con-
currently create new geometry variations of the training image textures. To synthesize hazy data for WAYMO dataset,
a pre-trained Monodepth2 model [17], which was trained on driving scenario data to estimate the depth maps of image
data in WAYMO dataset, is utilized. After obtaining the depth maps, Eq. (2) and Eq. (1) are then applied sequentially
to generate transmission maps and synthesized hazy images. In order to avoid generating only a certain amount of
haze in all images, the value of β is set to be a randomly chosen number between 1.0 to 3.0. This selection method of
β can generate different degrees of haze in the synthesized image data and make the training data more diverse.

4.2. Experimental Settings

The experiments were performed on GeForce GTX TITAN X Graphics Cards. The network input size is 512x512.
The number of training epochs is 400. In the first 200 epochs, the learning rate is fixed to 10-4 and in the final 200
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Fig. 4. Visual dehazing results on synthesized hazy data (in each pair, left: hazy image, right: dehazed image).

Table 1. Quantitative dehazing results on I-HAZE and O-HAZE datasets.

I-HAZE O-HAZE

Method PSNR SSIM PSNR SSIM

DCP (TPAMI’10) [4] 14.43 0.7516 16.78 0.6532
CAP (TIP’15) [3] 12.24 0.6065 16.08 0.5965
MSCNN (ECCV’16) [6] 15.22 0.7545 17.56 0.6495
AOD-Net (ICCV’17) [1] 13.98 0.7323 15.03 0.5385
PPD-Net (CVPRW’18) [7] 22.53 0.8705 24.24 0.7205

EDN-GTM (our) 22.90 0.8270 23.46 0.8198

Table 2. Quantitative dehazing results on Dense-HAZE and NH-HAZE datasets.

Dense-HAZE NH-HAZE

Method PSNR SSIM PSNR SSIM

DCP (TPAMI’10) [4] 10.06 0.3856 10.57 0.5196
DehazeNet (TIP’16) [5] 13.84 0.4252 16.62 0.5238
AOD-Net (ICCV’17) [1] 13.14 0.4144 15.40 0.5693
MSBDN (CVPR’20) [18] 15.37 0.4858 19.23 0.7056
AECR-Net (CVPR’21) [19] 15.80 0.4660 19.88 0.7173

EDN-GTM (our) 15.43 0.5200 20.24 0.7178

epochs, we linearly decay the learning rate to zero. The dehazing performance is measured by using peak signal-
to-noise ratio (PSNR) and structural similarity index measure (SSIM) metrics. The PSNR, however, is chosen as
our primary performance measure because we consider the pixel quality of the restored image that can benefit other
computer vision tasks such as object detection. The network is trained with the batch size of 1 sample which shows
empirically better results on validation in image restoration task [10].

4.3. Results

The performance of the proposed EDN-GTM scheme on I-HAZE and O-HAZE datasets is first compared with
those of other approaches in Table 1 and Fig. 3. As shown in Table 1, on I-HAZE dataset, the proposed EDN-
GTM scheme achieves the best dehazing performance in terms of PSNR (22.90 dB) while showing the second-best
performance in terms of SSIM (0.8270). On O-HAZE dataset, the proposed EDN-GTM scheme gives the second-best
performance in terms of PNSR (23.46 dB) while showing the best performance in terms of SSIM (0.8198). More
quantitative dehazing results on I-HAZE and O-HAZE datasets are summarized in Table 1, where the best and the



688 Le-Anh Tran  et al. / Procedia Computer Science 204 (2022) 682–689

Author name / Procedia Computer Science 00 (2022) 000–000 7

Fig. 5. Detection performance on hazy and dehazed images. (in each pair, left: hazy, right: dehazed, red: ground truth, green: detection).

Table 3. Object detection accuracy on hazy and dehazed images.

Hazy Images Dehazed Images

mAP 41.91% 46.64%

second-best results are shown in red and blue colors, respectively. Typical visual dehazing results of EDN-GTM and
other methods on I-HAZE and O-HAZE datasets are shown in Fig. 3 (a) and Fig. 3 (b), respectively.

Experiments on Dense-HAZE and NH-HAZE datasets are then performed. Note that Dense-HAZE and NH-HAZE
datasets are more challenging than I-HAZE and O-HAZE datasets. The performance of the proposed EDN-GTM
scheme is also compared with those of other approaches and summarized in Table 2, where the best and the second-
best results are shown in red and blue colors, respectively. On Dense-HAZE dataset, the proposed EDN-GTM scheme
gives the second-best performance in terms of PNSR (15.43 dB) while showing the best performance in terms of
SSIM (0.5200). On NH-HAZE dataset, the proposed EDN-GTM scheme achieves the best dehazing performance in
both PSNR (20.24 dB) and SSIM (0.7178). Some of typical dehazing results from various methods on Dense-HAZE
and NH-HAZE datasets are presented in Fig. 3 (c) and Fig. 3 (d), respectively.

As summarized in Table 1, Table 2, and Fig. 3, the proposed EDN-GTM scheme achieves favorable results on all
the datasets in our experiments when compared with other recent dehazing methods. It demonstrates that the proposed
EDN-GTM scheme has a well-designed architecture that can perform efficiently on haze removal tasks. In addition,
we notice that transmission map plays a very important role in guiding the proposed EDN-GTM scheme to obtain
excellent results in image dehazing problem.

For further evaluation of the applicability of the proposed EDN-GTM scheme to driving object detection problems,
the proposed EDN-GTM scheme is utilized as a preprocessing tool for hazy images. Visual dehazing results on
synthesized WAYMO hazy dataset are indicated in Fig. 4. After dehazing the input images by adopting the proposed
EDN-GTM scheme, a pre-trained YOLOv4 object detection model [14] which was trained on the original WAYMO
dataset is utilized to evaluate object detection performance on hazy and dehazed images. The detection results after
performing experiments on 1,100 images are summarized in Table 3. As shown in Table 3, the proposed EDN-GTM
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scheme helps to improve the mean average precision (mAP) by 4.73%. Fig. 5 shows visual detection results on hazy
and dehazed images, where the red and green boxes indicate the ground truth objects and the detections, respectively.
As can be seen from Fig. 5, the dehazed images obtained through the proposed EDN-GTM scheme can provide much
improved detection results than what the original hazy images can provide.

5. Conclusions

In this paper, a novel encoder-decoder generative network with guided transmission map (EDN-GTM) for single
image dehazing is proposed. The proposed EDN-GTM scheme utilizes the transmission map extracted by adopting
dark channel prior as an additional channel in the input to improve dehazing performance. The network architecture
is inspired by U-Net and several variations to the network including spatial pyramid pooling module and Swish
activation are implemented to achieve the best dehazing performance. To enhance the learning efficiency, various data
augmentation methods such as random crop and flip are adopted when preparing training data. The experiments on
benchmark datasets show that the proposed EDN-GTM scheme outperforms most of conventional and deep learning-
based algorithms in PSNR and SSIM metrics. Moreover, experiments on object detection problem show that the
proposed EDN-GTM scheme can be successfully applied as a preprocessing tool for dehazing images so that the
object detection accuracy can be improved.
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Fig. 5. Detection performance on hazy and dehazed images. (in each pair, left: hazy, right: dehazed, red: ground truth, green: detection).

Table 3. Object detection accuracy on hazy and dehazed images.

Hazy Images Dehazed Images

mAP 41.91% 46.64%

second-best results are shown in red and blue colors, respectively. Typical visual dehazing results of EDN-GTM and
other methods on I-HAZE and O-HAZE datasets are shown in Fig. 3 (a) and Fig. 3 (b), respectively.

Experiments on Dense-HAZE and NH-HAZE datasets are then performed. Note that Dense-HAZE and NH-HAZE
datasets are more challenging than I-HAZE and O-HAZE datasets. The performance of the proposed EDN-GTM
scheme is also compared with those of other approaches and summarized in Table 2, where the best and the second-
best results are shown in red and blue colors, respectively. On Dense-HAZE dataset, the proposed EDN-GTM scheme
gives the second-best performance in terms of PNSR (15.43 dB) while showing the best performance in terms of
SSIM (0.5200). On NH-HAZE dataset, the proposed EDN-GTM scheme achieves the best dehazing performance in
both PSNR (20.24 dB) and SSIM (0.7178). Some of typical dehazing results from various methods on Dense-HAZE
and NH-HAZE datasets are presented in Fig. 3 (c) and Fig. 3 (d), respectively.

As summarized in Table 1, Table 2, and Fig. 3, the proposed EDN-GTM scheme achieves favorable results on all
the datasets in our experiments when compared with other recent dehazing methods. It demonstrates that the proposed
EDN-GTM scheme has a well-designed architecture that can perform efficiently on haze removal tasks. In addition,
we notice that transmission map plays a very important role in guiding the proposed EDN-GTM scheme to obtain
excellent results in image dehazing problem.

For further evaluation of the applicability of the proposed EDN-GTM scheme to driving object detection problems,
the proposed EDN-GTM scheme is utilized as a preprocessing tool for hazy images. Visual dehazing results on
synthesized WAYMO hazy dataset are indicated in Fig. 4. After dehazing the input images by adopting the proposed
EDN-GTM scheme, a pre-trained YOLOv4 object detection model [14] which was trained on the original WAYMO
dataset is utilized to evaluate object detection performance on hazy and dehazed images. The detection results after
performing experiments on 1,100 images are summarized in Table 3. As shown in Table 3, the proposed EDN-GTM
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scheme helps to improve the mean average precision (mAP) by 4.73%. Fig. 5 shows visual detection results on hazy
and dehazed images, where the red and green boxes indicate the ground truth objects and the detections, respectively.
As can be seen from Fig. 5, the dehazed images obtained through the proposed EDN-GTM scheme can provide much
improved detection results than what the original hazy images can provide.

5. Conclusions

In this paper, a novel encoder-decoder generative network with guided transmission map (EDN-GTM) for single
image dehazing is proposed. The proposed EDN-GTM scheme utilizes the transmission map extracted by adopting
dark channel prior as an additional channel in the input to improve dehazing performance. The network architecture
is inspired by U-Net and several variations to the network including spatial pyramid pooling module and Swish
activation are implemented to achieve the best dehazing performance. To enhance the learning efficiency, various data
augmentation methods such as random crop and flip are adopted when preparing training data. The experiments on
benchmark datasets show that the proposed EDN-GTM scheme outperforms most of conventional and deep learning-
based algorithms in PSNR and SSIM metrics. Moreover, experiments on object detection problem show that the
proposed EDN-GTM scheme can be successfully applied as a preprocessing tool for dehazing images so that the
object detection accuracy can be improved.
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