
Preprint - Under Review (2024) 1–20 1
Version 1

Cluster Analysis via Projection onto Convex
Sets

Le-Anh Tran a, Daehyun Kwon b, Henock Mamo Deberneh c, and Dong-Chul Park a,∗

a Dept. of Electronics Engineering, Myongji University, Gyeonggi, South Korea
b Dept. of Information Technology Polish Management, Soongsil University, Seoul, South Korea
c Dept. of Biochemistry and Molecular Biology, University of Texas Medical Branch, Texas, USA

Abstract. This paper proposes a data clustering algorithm that is inspired by the prominent convergence property of the Pro-
jection onto Convex Sets (POCS) method, termed the POCS-based clustering algorithm. For disjoint convex sets, the form of
simultaneous projections of the POCS method can result in a minimum mean square error solution. Relying on this important
property, the proposed POCS-based clustering algorithm treats each data point as a convex set and simultaneously projects
the cluster prototypes onto respective member data points, the projections are convexly combined via adaptive weight values
in order to minimize a predefined objective function for data clustering purposes. The performance of the proposed POCS-
based clustering algorithm has been verified through a large scale of experiments and data sets. The experimental results have
shown that the proposed POCS-based algorithm is competitive in terms of both effectiveness and efficiency against some of the
prevailing clustering approaches such as the K-Means/K-Means++ and Fuzzy C-Means (FCM) algorithms. Based on extensive
comparisons and analyses, we can confirm the validity of the proposed POCS-based clustering algorithm for practical purposes.
The code of this work is publicly available at https://github.com/tranleanh/pocs-based-clustering.
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1. Introduction

Cluster analysis or clustering is a kind of unsupervised learning task that aims to categorize similar
data points while separating them from dissimilar ones without any prior knowledge. There exist numer-
ous types of clustering approaches, each method is best suited to a particular distribution of data, thus it
is very difficult to introduce a thorough list of all the clustering algorithms because of the variation of
information, the research fields, and the rapid development of modern technology [1]. Though there ex-
ists a great number of approaches to clustering, there are three most popularly used categories including
partitional, density-based, and hierarchical methods [2]. Among them, the simplest form of clustering
is partitional clustering [3–8] which considers the clustering error (sum of the distances from all cluster
centers to their corresponding data members) as the main criterion to be optimized.

One of the most popular partitional methods is the K-Means algorithm [9] which has been widely
applied to numerous general applications due to its simplicity and efficiency [10]. The K-Means cluster-
ing algorithm alternates between assigning cluster membership for each data point to the nearest cluster
center and updating the center of each cluster. The objective of the algorithm is to find a set of prototypes
that minimize the clustering error and the algorithm converges when there is no further change in the
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assignment of instances to clusters [9]. The convergence quality of the K-Means clustering algorithm
heavily depends on the initial prototypes. Besides, this algorithm is not guaranteed to find the optimum
and is known to be sensitive to noise and outliers [11]. In order to overcome the drawbacks of the naïve
K-Means, Arthur and Vassilvitskii introduced the K-Means++ algorithm [12] which can improve both
the speed and accuracy of the naïve version by enhancing the quality of prototype initializing procedure
via a careful seeding method.

Another well-known clustering method in the partitional category is the Fuzzy C-Means (FCM) algo-
rithm. In the FCM algorithm, a data point can belong to multiple subgroups, and the certainty degree for
that data point belonging to a certain cluster is represented by a membership function. The performance
of the FCM algorithm is also highly dependent on the initialization of prototypes and the initial mem-
bership value [13]. In addition, the drawbacks of the FCM algorithm include extended computational
time and incapability in handling noisy data and outliers [14]. In order to overcome the FCM algo-
rithm’s shortcomings, the Gradient-based Fuzzy C-Means (GBFCM) algorithm was introduced by Park
and Dagher [15] in which the minimization process of the objective function is proceeded by solving
two equations alternatively in an iterative fashion.

On the other extreme, Projection onto Convex Sets (POCS) is a powerful method of finding the com-
mon point of convex sets in several convex programming problems which was introduced in the mid-
1960s [16, 17]. The main goal of the POCS approach is to find a vector that resides in the intersection
of convex sets. It has been shown that successive projections between two or more convex sets with
non-empty intersections converge to a point that exists in the intersection of the convex sets [16]. When
closed convex sets are disjoint, the sequential projections do not converge to a single point, instead, they
converge to greedy limit cycles which are dependent on the order of the projections [18]. POCS has been
applied to solve various problems including communication systems [19], super-resolution [20], decon-
volution and extrapolation [21], embedding analysis [22], and tomography [23]. POCS can also be ap-
plied to point-matching problems to determine the correspondence between two sets of points extracted
from different images. Lian et al. [24] proposed a clustering successive POCS (SPOCS) algorithm for
a fast point-matching problem. The algorithm utilizes SPOCS for enforcing a two-way constraint. The
concept of clustering is used to decrease the computational load of the SPOCS technique. The algorithm
can reduce computational complexity with an insignificant decline in precision.

In this paper, we present a novel clustering algorithm using the convergence property of POCS. The
proposed POCS-based clustering algorithm considers each data point as a convex set and all the data
points in a data set as disjoint convex sets, then performs projections from the cluster prototypes onto
each of their respective constituent instances in order to update the membership of data and compute a
new set of prototypes. At the beginning, a careful seeding method is applied to initialize cluster proto-
types, and each data point is then assigned to its nearest cluster. The process of simultaneously projecting
the cluster prototypes onto corresponding member data points is repeated until the convergence criterion
is satisfied and the final clusters are found. Part of this research was presented in [25] where the basic
idea and the preliminary experiments were introduced.

The remainder of this paper is structured as follows. In Section 2, a brief review of the POCS concepts
and notations is presented. The POCS-based clustering algorithm is proposed in Section 3. Section 4
provides extensive experiments and assessments on a wide range of applications and datasets in order to
verify the validity of the proposed POCS-based clustering algorithm. Section 5 concludes this paper.
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2. Preliminaries

The theory of convex set and function has a rich history and has been a focus of research as it has
been one of the most powerful tools in the theory of optimization [26–28]. This work proposes to use
the concepts of convex set and POCS theory for data analysis and clustering problems.

2.1. Convex Set

A convex set is a collection of vectors (data) having the following property: given a non-empty set C,
which is a subset of the Hilbert space H (C ⊆ H), for all x⃗1, x⃗2 ∈ C, the set C is called a convex set if
for every real value λ with λ ∈ [0, 1] the following condition holds true:

x⃗ := λx⃗1 + (1− λ)x⃗2 ∈ A, (1)

and thus x⃗ = x⃗1 when λ = 1 and x⃗ = x⃗2 if λ = 0. In this sense, a line segment connecting any two
points x⃗1 and x⃗2 is completely subsumed in the set C [29].

2.2. Projection onto Convex Sets (POCS)

The concept of projection of a point onto a plane deals with minimization problems, which is to find
a point on the plane that is closest to the center of the projection. Given a vector z⃗ with z⃗ /∈ C, the
projection of z⃗ onto C, denoted as PC , is the unique point x⃗0 (x⃗0 ∈ C):

x⃗0 = PC (⃗z), (2)

such that the distance between z⃗ and x⃗0 is minimum:

x⃗0 = argmin
x⃗∈C
||⃗z− x⃗||. (3)

If z⃗ ∈ A, then the projection of z⃗ onto C is itself (⃗z = PC (⃗z)). The constrained optimization task is
expressed as Eq. (3), where x⃗ denotes all the points belonging to the set C.

2.3. Alternating POCS

Alternating projections between two (or more) convex sets with non-empty intersections converge to
a point that falls within the intersection of the convex sets [16]. This prominent property of alternat-
ing POCS can be applied to solve many tasks which can be described under the convex optimization
problems. Given n closed and convex sets with non-empty intersections, the alternating (or successive)
projections on the sets can be expressed as:

x⃗[q + 1] = PCn(...(PC2(PC1(x⃗[q])))...), (4)

where q denotes the iteration index. Starting from any initial point, the solution to the task resides in the
intersection of the convex sets, represented by the following equation:

x⃗[∞] ∈
n⋂

i=1

Ci = C1 ∩C2 ∩ ... ∩Cn. (5)
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Fig. 1. Alternating POCS: (a) The successive projections converge to a point that belongs to the intersection of the sets for
intersecting convex sets, while (b) they converge to greedy limit cycles that depend on the order of projections for disjoint
convex sets.

Note that the intersection is also convex. A graphical illustration of the alternating projections onto
intersecting convex sets is given in Figure 1a.

On the other hand, when the convex sets are disjoint, the sequential projections do not converge to
a single point. Instead, they converge to greedy limit cycles which are dependent on the order of the
projections. Especially, in the case of only two non-intersecting convex sets, the projections converge
to a greedy limit cycle between two points (one for each set) that are closest in the distance sense [30].
Figure 1b depicts an illustration of alternating projections on three disjoint convex sets.

2.4. Parallel POCS

The parallel mode of POCS sometimes is referred to as simultaneous weighted projections [31]. Given
an initial point and n convex sets with non-empty intersections, the point is simultaneously projected onto
all convex sets, and each projection has a weight of importance wi such that:

n∑
i=1

wi = 1. (6)

All the projections in each iteration are convexly combined to find a minimum mean square error solution
which can be applied to solve many minimization problems. The updated data point after one iteration
of parallel projections can be expressed as:

x⃗[q + 1] =

n∑
i=1

wiPCi(x⃗[q]), (7)

where q denotes the iteration index. The main advantages of the parallel mode of POCS when com-
pared with the alternating version include computational efficiency and improved execution time. The
geometrical representation of the parallel POCS method is given in Figure 2a.
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Fig. 2. Parallel POCS: (a) The simultaneous projections converge to a point that belongs to the intersection of the sets for
intersecting convex sets, whereas (b) they converge to a minimum mean square error solution for disjoint convex sets.

If the sets are disjoint convex sets, the parallel projections after some iterations will converge to a
minimum mean square error solution which is written as:

x⃗[∞] = argmin
x⃗

n∑
i=1

wi||x⃗− PCi(x⃗)||, (8)

with a constraint as in Eq. (6). A graphical interpretation of the convergence process of the parallel
POCS method is illustrated in Figure 2b.

3. Methodology

As discussed in Section 2, the iterative projections (for both alternating and parallel forms) of a random
data point onto closed and intersecting convex sets converge to a point that resides on the intersection
of the sets. For disjoint convex sets, the alternating POCS converges to greedy limit cycles which are
dependent on the order of projections. Alternatively, the parallel mode of projection converges to a point
that minimizes the weighted sum of the distances from the point to the sets. The parallel form of POCS
performs the projections simultaneously, this property can improve the computational efficiency when
compared with that of the alternating version. Relying on the prominent properties of the parallel form
of POCS, in this section, we devise the POCS-based clustering algorithm.

Following the definition of the convex set presented in Section 2.1, an empty set ∅, a singleton set {x0},
line segments, hyperplanes, and Euclidian balls are considered convex sets. In this sense, for clustering
tasks, a data point (or a vector) is a singleton set with only one element denoted by {x⃗0} and can be
considered a convex set, and the projection of a cluster prototype onto a data point is that data point. In
order to prove that, a mathematical proof is given as follows. Let V represent a vector space over R, and
x⃗0 ∈ V , then the singleton set S = {x⃗0} is a convex set.
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Algorithm 1 POCS-based Clustering Algorithm
Input: S = {v⃗n | n = 1, 2, ...,N} (dataset), K (number of clusters), I (number of iterations)
Output: X = {x⃗ j | j = 1, 2, ...,K} (cluster prototypes)
Steps:
X = {x⃗ j = ∅ | j = 1, 2, ...,K}

c⃗ =
1

N

N∑
n=1

v⃗n

x⃗1 ← argmin
v⃗
||⃗v− c⃗||

NX ← 1
for j = 2, ...,K do

for i = 1, ..., (N − NX) do
di ← ||v⃗i − x⃗nearest||2 ▷ Process the remaining data points

end
D2 = {di | i = 1, ..., (N − NX)}
ProbD2 ← normalize(D2)
Sample v⃗x from the remaining data points with probability ProbD2

x⃗ j ← v⃗x

NX ← NX + 1
end
Assign each data point in S to its nearest prototype
q← 1
while q ⩽ I do

for j = 1, ...,K do
for i = 1, ...,N j do

w ji ←
||x⃗ j − P ji(x⃗ j)||∑N j

m=1 ||x⃗ j − Pm(x⃗ j)||
end

x⃗ j ← x⃗ j +

N j∑
i=1

w ji(P ji(x⃗ j)− x⃗ j)

end
q← q + 1
if X[q] = X[q− 1] then

break ▷ Converged!
end
Re-assign each data point to its nearest prototype

end

Proof. For any x⃗, y⃗ ∈ S , we have x⃗ = y⃗ = x⃗0. It follows that:
∀λ ∈ [0, 1] : λx⃗ + (1− λ)y⃗
= λx⃗0 + (1− λ)x⃗0
= x⃗0,

and we have x⃗0 ∈ S , hence, S is a convex set. □
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On the other hand, cluster prototype initialization is a vastly important procedure that directly affects
clustering performance. Beginning with arbitrary prototypes which are typically chosen uniformly at
random from the data points has been widely applied due to its positive effects on empirical speed
and simplicity. However, this prototype initialization method comes at the price of unstable clustering
accuracy [9]. In order to handle the issues of the random seeding technique, a careful seeding procedure
can be adopted to improve accuracy while assuring execution speed [12]. To this end, we adopt a careful
prototype initialization procedure which is described as follows: the first prototype is chosen as the data
point which is closest to the center of the whole dataset, then each of the next prototypes is chosen
successively among the rest of data points based on a weighted probability, called D2 weighting [12],
that is proportional to the squared distances from the data points to their respective nearest prototypes
that have been chosen earlier.

Consequently, we can devise the POCS-based clustering algorithm as follows: Given a set of data
points and a parameter K denoting the predefined number of clusters, the proposed POCS-based cluster-
ing algorithm first adopts a careful prototype initialization procedure, then the algorithm treats each data
point as a convex set and all data points as disjoint convex sets, and applies a simultaneous weighted
projection method to find cluster prototypes and their corresponding member data points via minimizing
an objective function J which is defined as follows:

J =

K∑
j=1

N j∑
i=1

w ji||x⃗ j − P ji(x⃗ j)||, (9)

and:

w ji =
||x⃗ j − P ji(x⃗ j)||∑N j

m=1 ||x⃗ j − Pm(x⃗ j)||
, (10)

where N j represents the number of data points in the jth cluster, P(x⃗ j) is the projection of the prototype
x⃗ j onto its member points, and w denotes the weight of importance of the projection. Note that with the
formulation of weight calculation as in Eq. (10), the constraint:

N j∑
i=1

w ji = 1, (11)

can be satisfied as described in Eq. (6).
Algorithm 1 shows the pseudocode of the proposed POCS-based clustering algorithm which includes

three main steps. In the first step, the algorithm initializes cluster prototypes by applying a careful pro-
totype initializing method. In the second step, each data point is assigned to the nearest prototype. In the
last step, for each cluster, the algorithm performs simultaneous projections and computes new cluster
prototypes using the following equation:

x⃗ j[q + 1] = x⃗ j[q] +
N j∑

i=1

w ji(P ji(x⃗ j[q])− x⃗ j[q]), (12)
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(a) (b) (c) (d)

Fig. 3. Visual clustering results of various clustering methods on A1 dataset (red points denote cluster centroids): (a) FCM, (b)
K-Means, (c) K-Means++, and (d) POCS-based.

(a) (b) (c) (d)

Fig. 4. Visual clustering results of various clustering methods on A2 dataset (red points denote cluster centroids): (a) FCM, (b)
K-Means, (c) K-Means++, and (d) POCS-based.

where q denotes the iteration index. The second and the third steps are iteratively repeated until conver-
gence which is when the cluster prototypes no longer change.

The clustering problem we are dealing with is to solve the optimization problem for the objective
function given by Eq. (9). That is, starting from a set of initial prototypes:

X[0] = {x⃗ j[0] | j = 1, 2, ...,K}, (13)

the algorithm converges to a set of optimized prototypes which minimizes the weighted sum of the
distances from the prototypes to their corresponding member points:

X[∞] = {x⃗ j[∞] | j = 1, 2, ...,K} = argmin
{x⃗}

K∑
j=1

N j∑
i=1

w ji||x⃗ j − P ji(x⃗ j)||. (14)

4. Experiments and Analyses

In order to provide a comprehensive evaluation, we have compared the performance of the proposed
POCS-based algorithm against those of other prevailing methods including the K-Means, K-Means++,
and FCM algorithms on four sets of experiments with various types of datasets and applications. The
first experiment exploits the synthetic 2-D data sets that are publicly available on the website Clustering
datasets [32]. The second experiment deals with high-dimensional data sets which were selected from
the UCI database repository [33]. The third experiment is to examine the applicability of the proposed
POCS-based algorithm to face clustering. The last experiment investigates the effectiveness and effi-
ciency of the proposed algorithm for big data clustering problems. The experimental results were evalu-
ated based on different types of metrics which are discussed in each experiment section. The processor
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(a) (b) (c) (d)

Fig. 5. Visual clustering results of various clustering methods on Aggregation dataset (red points denote cluster centroids): (a)
FCM, (b) K-Means, (c) K-Means++, and (d) POCS-based.

(a) (b) (c) (d)

Fig. 6. Visual clustering results of various clustering methods on R15 dataset (red points denote cluster centroids): (a) FCM,
(b) K-Means, (c) K-Means++, and (d) POCS-based.

Table 1
Details of the 2-D synthetic datasets.

A1 A2 Aggregation R15 S1 S2
#Clusters 20 35 7 15 15 15

#Attributes 2 2 2 2 2 2
#Instances 3,000 5,250 788 600 5,000 5,000

used in all the experiments was Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz on a 64-bit operating
system.

4.1. Evaluation on Synthetic 2-D Data Sets

Assessments of clustering results on 2-D space allow observers to easily evaluate visual clustering
solutions produced by different clustering algorithms. To this end, experiments to examine the perfor-
mances of the proposed POCS-based clustering algorithm on six synthetic 2-D data sets including A1,
A2, Aggregation, R15, S1, and S2 were conducted [32]. The specifications of these data sets are sum-
marized in Table 1.

Figures 3-8 illustrate typical clustering results produced by different methods in 2-D plots. The found
cluster centroids are marked out in red color and located in the vicinity of the center of each data group.

Figure 3 and Figure 4 show the representative visual clustering results of the algorithms under con-
sideration on the A1 and A2 datasets. Both A1 and A2 datasets contain 2-D data points that form 20
and 35 clusters, respectively. The numbers of data points for the A1 and A2 datasets are 3,000 and
5,250, respectively. As shown in Figure 3 and Figure 4, the cluster memberships and prototypes vary for
different algorithms. Despite the mild overlapping among the clusters, all the algorithms under consider-
ation were able to identify most of the clusters. Different from the A1 and A2 datasets, the Aggregation
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(a) (b) (c) (d)

Fig. 7. Visual clustering results of various clustering methods on S1 dataset (red points denote cluster centroids): (a) FCM, (b)
K-Means, (c) K-Means++, and (d) POCS-based.

(a) (b) (c) (d)

Fig. 8. Visual clustering results of various clustering methods on S2 dataset (red points denote cluster centroids): (a) FCM, (b)
K-Means, (c) K-Means++, and (d) POCS-based.

Table 2
Execution time of different algorithms on various datasets (sec.)

A1 A2 Aggregation R15 S1 S2
FCM 0.122 1.264 0.026 0.038 0.243 0.285

K-Means 0.073 0.233 0.012 0.010 0.128 0.184
K-Means++ 0.044 0.132 0.016 0.007 0.044 0.069
POCS-based 0.042 0.121 0.018 0.009 0.063 0.075

dataset shown in Figure 5 has 7 clusters with a total of 788 instances distributed in different densities.
As the outcomes shown in Figure 5, the FCM, K-Means++, and POCS-based algorithms are considered
to yield more favorable results than the K-Means method in this dataset. Despite the fact that these algo-
rithms are not able to correctly segregate all the clusters, the results can be considered natural since these
clustering methods are developed based on Euclidean distance for their basic operations and may not
be well applicable to data sets with disproportionately distributed data points. The R15 dataset shown
in Figure 6 contains 600 data points which are divided into 15 clusters. One of the clusters locates in
the vicinity of the center of the data space and the remaining clusters surround the center cluster on
two layers of circular orientation. As can be seen from Figure 6, which displays the clustering results,
most of the algorithms under consideration were able to correctly identify the cluster prototypes and
groups, whereas only the result yielded by the K-Means approach was not very favorable. The S1 and
S2 datasets depicted in Figure 7 and Figure 8, respectively, have 5,000 data points that form 15 clusters
for each data set. As the results shown in Figure 7 and Figure 8, the algorithms under consideration were
able to correctly segregate most of the cluster groups.

In addition, execution time and clustering error were adopted as comparison metrics to quantitatively
assess the performance of each algorithm. On every dataset, each algorithm was executed 10 times



Le-Anh Tran et al. / Cluster Analysis via Projection onto Convex Sets 11

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (sec.)

100

200

300

400

500

600

700

Er
ro

r

FCM
K-Means
K-Means++
POCS

(a) A1

0.0 0.5 1.0 1.5 2.0
Time (sec.)

200

400

600

800

1000

1200

1400

1600

Er
ro

r

FCM
K-Means
K-Means++
POCS

(b) A2

0.000 0.005 0.010 0.015 0.020
Time (sec.)

75

100

125

150

175

200

225

250

Er
ro

r

FCM
K-Means
K-Means++
POCS

(c) Aggregation

0.00 0.01 0.02 0.03 0.04
Time (sec.)

25

50

75

100

125

150

175

200

Er
ro

r

FCM
K-Means
K-Means++
POCS

(d) R15

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (sec.)

200

400

600

800

1000

1200

1400

1600

Er
ro

r

FCM
K-Means
K-Means++
POCS

(e) S1

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time (sec.)

200

400

600

800

1000

1200

1400

1600

Er
ro

r

FCM
K-Means
K-Means++
POCS

(f) S2

Fig. 9. Typical convergence processes of various clustering methods on the 2-D synthetic datasets: (a) A1, (b) A2, (c) Aggre-
gation, (d) R15, (e) S1, and (f) S2.
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Fig. 10. Comparison of various clustering methods in terms of clustering error on the synthetic 2-D datasets.

and the mean values of convergence speed and clustering error are presented. Table 2 summarizes the
measurements of the average convergence time of different algorithms on various synthetic 2-D data
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Table 3
Details of the UCI benchmark datasets.

Iris BCW Seeds Ionos Sonar Wine Glass Ecoli PD QSAR Chess
#Clusters 3 2 3 2 2 3 6 8 2 2 2

#Attributes 4 10 7 34 60 13 10 8 754 1,024 36
#Instances 150 699 210 351 208 178 214 336 756 1,687 3,196

sets. Based on the results shown in Table 2, the convergence speed of the POCS-based algorithm can
be competitively compared with those of the K-Means/K-Means++ approaches and clearly outperforms
that of the FCM algorithm. Typical convergence processes of those clustering methods on the synthetic
2-D data sets are illustrated in Figure 9, while Figure 10 shows the comparisons in terms of clustering
error of different algorithms after convergence. The clustering error E is defined as:

E =

K∑
k=1

Ik∑
i=1

||xk − dk,i||, (15)

where K is the number of clusters, I is the number of data points in one cluster, while xk and dk,i denote
the final prototype and the ith member point of the kth cluster, respectively. As shown in Figure 10, the
differences in clustering error among the FCM, K-Means++, and POCS-based algorithms are marginal,
whereas the error measurements for the K-Means method are exceptionally higher on S1 and S2 datasets.

4.2. Evaluation on High-dimensional Data Sets

In this section, experiments on 11 benchmark data sets with up to 1,024 attributes have been con-
ducted so as to investigate the performance of the proposed POCS-based clustering algorithm on clus-
tering tasks with high-dimensional data. The data sets were selected from the UCI dataset repository,
including Iris, Breast-cancer-Wisconsin (BCW), Seeds, Ionosphere (Ionos), Sonar, Wine, Glass, Ecoli,
Parkinson’s Disease (PD), QSAR Androgen Receptor (QSAR), and King-Rook vs. King-Pawn (Chess)
[33]. A pre-defined number of clusters is also given for each data set. The specifications of the selected
benchmark data sets are presented in Table 3. The performances of the algorithms under consideration
were compared based on various standard metrics including Accuracy, Precision, Recall, and F1 score
which are measured as follows:

Accuracy=
T P+T N

T P+FP+FN+T N
, (16)

Precision=
T P

T P+FP
, (17)

Recall=
T P

T P+FN
, (18)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ T P
2 ∗ T P + FP + FN

, (19)
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Fig. 11. Comparisons of various methods in terms of Accuracy, Precision, Recall, and F1 Score on high-dimensional datasets.

where T P, T N, FP, FN represent true positive, true negative, false positive, and false negative, respec-
tively. Despite the fact that clustering is an unsupervised learning task, the classes can be retrieved when
the label information of input data is given. To this end, we determine the class of a cluster by adopt-
ing the confusion matrix method [34]. Each algorithm was executed 10 times on each data set and the
measurement values were averaged to present the final results.
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Table 4
Average execution time (sec.) of different algorithms on various UCI benchmark datasets.

Iris BCW Seeds Ionos Sonar Wine Glass Ecoli PD QSAR Chess
FCM 0.005 0.006 0.005 0.008 0.011 0.008 0.015 0.025 0.176 0.614 0.071

K-Means 0.002 0.005 0.003 0.003 0.003 0.001 0.003 0.009 0.025 0.141 0.027
K-Means++ 0.002 0.004 0.005 0.010 0.005 0.004 0.007 0.019 0.103 0.103 0.023
POCS-based 0.002 0.005 0.004 0.002 0.007 0.006 0.005 0.007 0.069 0.223 0.025

Table 5
Details of the face data subsets.

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5
Original Dataset FCF LFW LFW LFW LFW

#Clusters 5 7 13 25 86
#Attributes 128 128 128 128 128

#Instances (per cluster) 18-20 41-50 31-40 21-30 11-20
#Instances (total) 118 307 443 613 1,251

The comparisons in terms of Accuracy, Precision, Recall, and F1 score are summarized in Figure 11.
As shown in Figure 11, we can find clearly that the algorithms under the test show similar performances
with marginal differences in the magnitude of the evaluation metrics. The POCS-based algorithm can be
considered to produce competitive performances compared with the K-Means++ approach and outper-
form the FCM and K-Means algorithms in most cases. The measurements in terms of average execution
time were also examined and summarized in Table 4. From the results summarized in Table 4, the POCS-
based algorithm can converge as fast as the K-Means/K-Means++ methods while clearly surpassing the
FCM algorithm.

In general, the proposed POCS-based algorithm has shown promising performance when compared
with the other classical clustering algorithms in high-dimensional data clustering problems.

4.3. Evaluation on Face Clustering

In this section, we investigate the applicability of the proposed POCS-based clustering algorithm to
face clustering by performing clustering as a downstream task. Five subsets of face image data with
different numbers of clusters and densities (instances per cluster) were prepared based on two widely
used data sets for face clustering tasks, Five Celebrity Faces (FCF) [35] and Labeled Faces in the Wild
(LFW) [36]. The FCF dataset contains images of five celebrities (Ben Afflek, Elton John, Jerry Seinfeld,
Madonna, and Mindy Kaling) that are divided into training and validation sets. However, since this is
a small data set, we merged the training and validation sets to obtain a single data set of 118 images.
On the other hand, the LFW dataset is a test set for face verification [37] with 13,233 images of 5,749
identifications which were detected and centered by the Viola–Jones face detector [38]. Since there is
a significant imbalance in the face cluster densities with a lot of subjects having less than 10 instances,
we created four image subsets from the LFW dataset such that the cluster densities in each subset are
relatively equivalent and distributed in various ranges (11-20, 21-30, 31-40, and 41-50). The details of
the prepared data subsets in this experiment are summarized in Table 5.

The face clustering system in this experiment has three main steps. In the first step, MultiTask Cas-
caded Convolutional Neural Network (MTCNN) [39] is adopted with default settings to extract the face
region in a given input image. MTCNN is a robust and accurate face detector that has been applied to
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MTCNN FaceNet Embedding ClusteringInput Image

Fig. 12. The pipeline of the face clustering system in this experiment.

Table 6
Comparisons of various clustering algorithms in terms of accuracy (%) and execution time (sec.) in face clustering task.

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5
Acc. Time Acc. Time Acc. Time Acc. Time Acc. Time

FCM 93.6 0.18 92.4 0.25 93.9 2.43 91.3 3.38 82.3 4.74
K-Means 98.4 0.01 96.8 0.01 96.5 0.02 95.2 0.03 84.4 0.09

K-Means++ 99.5 0.01 99.6 0.02 98.2 0.03 98.4 0.05 91.6 0.19
POCS-based 99.5 0.01 99.7 0.02 98.0 0.03 98.5 0.05 91.9 0.20

numerous face recognition studies [40–42]. In the second step, FaceNet [37] is utilized for face embed-
ding extraction. The input and output shapes of FaceNet are 160x160x3 and 128x1, respectively. Thus,
each face region detected by MTCNN is cropped and resized to 160x160 pixels before being fed to
FaceNet. As a result, a set of 128-D face embeddings is obtained to be used for the clustering process at
the last step. The FaceNet model used in this experiment has been verified on the LFW dataset with an
accuracy of 99.63% [37], hence, the model can guarantee to produce high-quality feature embeddings
for downstream tasks such as classification and clustering. Figure 12 illustrates the pipeline of the face
clustering system in this experiment.

Table 6 summarizes the performances of the FCM, K-Means, K-Means++, and POCS-based cluster-
ing algorithms in terms of mean recognition accuracy and average processing speed after 10 times of
execution for each algorithm. As can be seen from Table 6, the POCS-based clustering algorithm can
perform competitively compared with the K-Means++ algorithm, while adequately outperforming the
K-Means algorithm and considerably surpassing the FCM approach in terms of accuracy. For the subsets
with the number of clusters lower than or equal to 25, the proposed POCS-based clustering algorithm
can provide superior accuracy (higher than 98%), whereas giving adequate results on the more chal-
lenging dataset (Subset 5) with 91.9% accuracy. In terms of processing time, the K-Means algorithm
is considered the most efficient approach when compared with the other methods. Even though the K-
Means, K-Means++, and POCS-based algorithms achieve relatively equivalent convergence speeds in
Subset 1, Subset 2, and Subset 3, the K-Means algorithm is considered to converge faster when the num-
ber of clusters becomes greater (Subset 4 and Subset 5). However, the fast convergence of the K-Means
method comes at a price of deteriorated accuracy. Hence, we justify that the POCS-based algorithm can
guarantee a better trade-off between effectiveness and efficiency over the K-Means algorithm. On the
other hand, the performance of the FCM algorithm is not able to surpass those of the other algorithms in
terms of both accuracy and execution time in this experiment.
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Fig. 13. Comparisons in terms of clustering error (bar charts) and convergence time (line graphs) with different numbers of
clusters on big data sets: (a,b) 3D Road Network, (c,d) Poker Hand, (e,f) MetroPT-3, and (g,h) Electric Power Consumption.
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Table 7
Details of the big data sets.

3D Road Poker Hand [43] MetroPT-3 [44]
Electric Power

Network [45] Consumption [46]
#Attributes 4 10 15 9
#Instances 434,874 1,025,010 1,516,948 2,075,259

4.4. Evaluation on Big Data Sets

The performance of the POCS-based clustering algorithm on big data is examined in this section. To
this end, four realistic data sets including 3D Road Network [45], Poker Hand [43], MetroPT-3 [44], and
Electric Power Consumption [46] were utilized to conduct experiments. The descriptions of these data
sets are summarized in Table 7.

In this examination, we only compare the POCS-based algorithm against the K-Means and K-
Means++ approaches, since the FCM algorithm produces close results as compared to the K-Means
method while its efficiency tends to deteriorate when the volume of data becomes larger [47]. Similar
to preceding experiments, the K-Means, K-Means++, and POCS-based clustering approaches have been
compared in terms of the average values of clustering error and convergence speed after 10 times of ex-
ecution for each algorithm. Since a predefined number of clusters is not provided for the data sets in this
experiment, we compare the performances of the algorithms under consideration via different numbers
of clusters K, with K = {2, 3, 5, 10, 15, 20}.

The comparisons in terms of clustering error and execution time are given in Figure 13. As shown in
Figure 13, in terms of clustering error, all the algorithms under examination generally provide competi-
tive performances, and the error is lower when the number of clusters becomes higher. The K-Means++
algorithm is considered to obtain the best results in most cases, whereas the POCS-based algorithm
usually produces better results than the K-Mean method. With regard to the execution time, all three
algorithms converge with competitive speed measures when K = {2, 3}, whereas the differences can be
observed more apparently when K becomes greater. Specifically, the K-Means++ algorithm converges
slower than the K-Means and POCS-based algorithms when the number of clusters is greater than 5.
Overall, for the clustering tasks with big data, the POCS-based algorithm can work with a more bal-
anced trade-off between effectiveness and efficiency. Specifically, the POCS-based algorithm can be
compared competitively with the K-Means algorithm in terms of convergence speed while producing
favorable clustering error as compared with the K-Means++ approach.

Consequently, the proposed POCS-based clustering algorithm generally yields a competitive perfor-
mance when compared with those of other clustering algorithms on various types of data sets and ap-
plications under our investigations. These results imply that the POCS-based clustering algorithm has
potential in a wide range of clustering tasks.

4.5. Data Sensitivity Analysis

Due to the strong dependency on the POCS optimization method, the proposed clustering approach
inherits significant characteristics of the POCS algorithm including a possibility of unexpected conver-
gence. The POCS methods have generally demonstrated robustness in finding local minimum solutions
based on predefined objective functions with low complexity [48]. However, there is a specific scenario
in which the minimum mean square error solutions of POCS can potentially produce undesirable out-
comes [31]. This scenario occurs when a dataset includes outliers. In such case, the proposed algorithm
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assigns higher weight values to outliers according to the importance constraint described in Eq. (10) and
results in outliers’ greater influence when compared to other data points. Note that this only happens
when the number of data points in the data set is relatively small. Consequently, the algorithm converges
to a position midway between the cluster and the outliers. However, we cannot judge whether this con-
vergence is considered desirable or not because we may not know whether the outlier data are valid or
noisy data in advance. Note that this problem is common in unsupervised learning algorithms. However,
when the number of data points is sufficient and the outlier rate is under control, the proposed POCS-
based algorithm can show competitive performances across various types of data and tasks which have
been demonstrated through extensive experiments in the paper.

5. Conclusions

A new clustering method, called Projection Onto Convex Set (POCS)-based clustering algorithm, is
proposed in this paper. The proposed POCS-based clustering algorithm treats each data point in a given
data set as a convex set and applies the convergence property of the parallel POCS method in order
to optimize the cluster prototypes. Based on extensive experiments on various synthetic and real-world
datasets, the proposed POCS-based algorithm has shown superior performance when compared with
the Fuzzy C-Means (FCM) clustering algorithm in most cases and is competitive with the K-Means/K-
Means++ algorithms. Furthermore, the execution speed and simplicity are additional important advan-
tages of the POCS-based algorithm over the FCM clustering approach. The proposed clustering algo-
rithm also shows its applicability when it is integrated with other deep learning-based models to serve
as a downstream task in a more complex system like face recognition. In general, we have empirically
demonstrated that the proposed POCS-based algorithm can be considered a promising tool for a wide
range of data clustering problems. However, the proposed algorithm still poses a challenge in achiev-
ing satisfactory convergence when confronted with substantial noise within a sparse database. In this
respect, our future work is targeted toward addressing this particular concern.
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